算法提高之动态规划:背包模型三

本文档探讨了背包问题、分组背包问题的具体算法实现,包括背包问题求解策略、机器分配的最优路径查找,以及金明的预算方案和开心的金明案例。通过C++代码展示了如何解决这些经典问题,适合理解动态规划在实际问题中的应用。
摘要由CSDN通过智能技术生成

1、背包问题求具体方案(01求具体方案)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

不能使用状态压缩的方式(将二维优化成一维),求的时候就是将每个状态反推一遍。

#include <iostream>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
	//从f[n][0]->f[1][m]枚举状态 使得f[1][m]为最大值
    for (int i = n; i >= 1; i -- )
        for (int j = 0; j <= m; j ++ )
        {
            f[i][j] = f[i + 1][j];
            if (j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
        }
	//从最大值f[1][m]找方案
    int j = m;
    for (int i = 1; i <= n; i ++ )
    	//判断 只能选以及 可选可不选的条件
        if (j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i])
        {
            cout << i << ' ';
            //选择
            j -= v[i];
        }

    return 0;
}

2、机器分配(分组背包问题求具体方案)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 11, M = 16;

int n, m;
int w[N][M];
int f[N][M];
//记录方案
int way[N];

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            cin >> w[i][j];

    for (int i = 1; i <= n; i ++ )
        for (int j = 0; j <= m; j ++ )
            for (int k = 0; k <= j; k ++ )
            //需要记录路径,则需要计算二维
                f[i][j] = max(f[i][j], f[i - 1][j - k] + w[i][k]);

    cout << f[n][m] << endl;
	//从后向前推
    int j = m;
    //f[n][m]最大值  i是公司分组
    for (int i = n; i; i -- )
    	//枚举第i个公司分配几个机器
        for (int k = 0; k <= j; k ++ )
            if (f[i][j] == f[i - 1][j - k] + w[i][k])
            {
            //i公司分配几个
                way[i] = k;
                j -= k;
                break;
            }
	//公司编号 从小到大输出
    for (int i = 1; i <= n; i ++ ) cout << i << ' ' << way[i] << endl;

    return 0;
}

3、金明的预算方案(分组背包)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>

#define v first
#define w second

using namespace std;

typedef pair<int, int> PII;

const int N = 60, M = 32010;

int n, m;
PII master[N];
vector<PII> servent[N];
int f[M];

int main()
{
    cin >> m >> n;

    for (int i = 1; i <= n; i ++ )
    {
        int v, p, q;
        cin >> v >> p >> q;
        p *= v;
        //q为0表示当前物品是主件
        if (!q) master[i] = {v, p};
        //否则是附件
        else servent[q].push_back({v, p});
    }
	//分组背包问题 个数
    for (int i = 1; i <= n; i ++ )
    	//体积
        for (int u = m; u >= 0; u -- )
        {	//决策
            for (int j = 0; j < 1 << servent[i].size(); j ++ )
            {
                int v = master[i].v, w = master[i].w;
                for (int k = 0; k < servent[i].size(); k ++ )
                    if (j >> k & 1)
                    {
                        v += servent[i][k].v; 	
                        w += servent[i][k].w;
                    }
                if (u >= v) f[u] = max(f[u], f[u - v] + w);
            }
    }

    cout << f[m] << endl;

    return 0;
}

4、开心的金明(01)

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 30010;

int n, m;
int f[N];

int main()
{
    cin >> m >> n;

    for (int i = 0; i < n; i ++ )
    {
        int v, w;
        cin >> v >> w;
        w *= v;
        for (int j = m; j >= v; j -- )
            f[j] = max(f[j], f[j - v] + w);
    }

    cout << f[m] << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值