文献阅读(二十五):Deep Mask Memory Network with Semantic Dependency and Context Moment for Aspect Level Sentiment Classification
- 出处:IJCAI 2019: 5088-5094
- 题目:面向方面层次情感分类的语义依赖和上下文矩的深层掩码记忆网络
- 主要内容:这篇论文较于一般应用深度记忆网络做该方面的工作的改进之处在于:1. 整合了语义分析信息到记忆网络中而不是位置信息。2. 设计了辅助任务来学习整个句子的情感分布,这可以为目标aspect的情感分类提供想要的背景信息。该论文提出模型被称作deep mask memory network with semantic dependency and context moment (DMMN-SDCM)。它基于记忆网络,引入语义分析信息来指导attention机制并有效学习其他aspect(非目标aspect)提供的信息。同时论文提出的context moment嵌入到了整个句子的情感分类,被设计用于为目标aspect提供背景信息。
Abstract
方面层次情感分类的目的是:识别句子中各个方面术语的情感。深层记忆网络通常利用上下文、词和方面之间的位置信息来产生记忆。虽然取得了较好的结果,但忽略了同句中各方面之间的关系信息,词语定位不能为方面情感分析提供足够准确的信息。
本文提出了一种新的面向方面层次情感分类的框架——具有语义依赖和上下文矩的深度掩码记忆网络(DMMN-SDCM),该网络将面向方面的语义解析信息和面向间的关系信息集成到面向方面层次的深度记忆网