(二十五):方面级情感分类语义依赖和上下文矩深层掩码记忆网络

该研究提出了一种面向方面层次情感分类的深度掩码记忆网络(DMMN-SDCM),将语义依赖信息与上下文矩集成到记忆网络中。DMMN-SDCM通过语义依赖掩码注意力、方面间语义建模和上下文矩情感学习模块,改善了传统方法对句子中方面间关系和全局情感信息的利用。实验表明,模型在SemEval 2014数据集上达到最先进的性能。
摘要由CSDN通过智能技术生成

  • 出处:IJCAI 2019: 5088-5094
  • 题目:面向方面层次情感分类的语义依赖和上下文矩的深层掩码记忆网络
  • 主要内容:这篇论文较于一般应用深度记忆网络做该方面的工作的改进之处在于:1. 整合了语义分析信息到记忆网络中而不是位置信息。2. 设计了辅助任务来学习整个句子的情感分布,这可以为目标aspect的情感分类提供想要的背景信息。该论文提出模型被称作deep mask memory network with semantic dependency and context moment (DMMN-SDCM)。它基于记忆网络,引入语义分析信息来指导attention机制并有效学习其他aspect(非目标aspect)提供的信息。同时论文提出的context moment嵌入到了整个句子的情感分类,被设计用于为目标aspect提供背景信息

Abstract

方面层次情感分类的目的是:识别句子中各个方面术语的情感。深层记忆网络通常利用上下文、词和方面之间的位置信息来产生记忆。虽然取得了较好的结果,但忽略了同句中各方面之间的关系信息,词语定位不能为方面情感分析提供足够准确的信息。
本文提出了一种新的面向方面层次情感分类的框架——具有语义依赖和上下文矩的深度掩码记忆网络(DMMN-SDCM),该网络将面向方面的语义解析信息和面向间的关系信息集成到面向方面层次的深度记忆网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laura_Wangzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值