最优化
Studying_swz
-
展开
-
最优化理论(二)拉格朗日乘子法
文章目录一:无约束条件二:等式约束条件引入:优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)一:无约束条件这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。二:等式约束条件这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日原创 2020-11-10 20:08:21 · 1912 阅读 · 0 评论 -
最优化理论(一)梯度直观理解
文章目录一:全导数二:方向导数三:梯度3.1为什么所有方向导数中会存在并且只存在一个最大值?3.2 这个最大值在哪个方向取得?值是多少?四:如何直观形象的理解方向导数与梯度以及它们之间的关系?五:总结一:全导数参考:https://www.zhihu.com/question/26966355/answer/154857139,直接看后面的评论,前面的太复杂了,有能力的可以看看!!二:方向导数三:梯度引出梯度:是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。原创 2020-11-10 19:48:38 · 1388 阅读 · 0 评论