概率论
文章平均质量分 62
Studying_swz
-
展开
-
概率论笔记(六)一维正态分布/二维正态分布/多维正态分布
文章目录一:一维正态分布二:二维正态分布/多维正态分布三:各向同性正态分布一:一维正态分布二:二维正态分布/多维正态分布三:各向同性正态分布各向同性的高斯分布(球形高斯分布)指的是各个方向方差都一样的多维高斯分布,协方差为正实数与identity matrix(单位矩阵)相乘。注:即方差都是一样的,均值不一样,方差的值可以单独用标量表示。参考链接:https://www.cnblogs.com/jiangkejie/p/12939776.htmlhttps://blog.cs原创 2020-11-10 16:29:58 · 21909 阅读 · 1 评论 -
概率论笔记(五)随机向量/多元随机变量
文章目录一:联合分布1.1联合分布函数1.2二维离散型随机向量及其联合分布列1.3二维连续型随机向量及其联合密度函数二:边缘分布与随机变量的独立性2.1边缘分布2.2随机变量的独立性2.3两个随机变量下的函数的分布2.3.1离散型2.3.2连续型一:联合分布引入:1.1联合分布函数注:相比于一维的分布函数,其增加了一维空间,成了二维空间,测试整体的二维空间变成了整体的1;之后同样是概率的累计。1.2二维离散型随机向量及其联合分布列1.3二维连续型随机向量及其联合密度函数性原创 2020-11-10 16:03:02 · 1127 阅读 · 0 评论 -
概率论笔记(四)概率分布的下期望和方差的公式总结
文章目录一:伯努利分布/0-1分布二:二项分布三:泊松分布四:正态分布五:均匀分布六:指数分布一:伯努利分布/0-1分布如果随机试验仅有两个可能的结果,那么这两个结果可以用0和1表示,此时随机变量X将是一个0/1的变量,其分布是单个二值随机变量的分布,称为伯努利分布。注意伯努利分布关注的是结果只有0和1,而不管观测条件是什么。推导过程:注:就是一次实验下的结果。不是0就是1.二:二项分布本质: 就是n次实验下的伯努利分布。期望和方差三:泊松分布1.引入很多场合下,我们感兴原创 2020-11-09 22:43:41 · 36240 阅读 · 3 评论 -
概率论笔记(三)几种常见的概率分布
文章目录一:伯努利分布/0-1分布二:二项分布三:泊松分布一:伯努利分布/0-1分布如果随机试验仅有两个可能的结果,那么这两个结果可以用0和1表示,此时随机变量X将是一个0/1的变量,其分布是单个二值随机变量的分布,称为伯努利分布。注意伯努利分布关注的是结果只有0和1,而不管观测条件是什么。推导过程:注:就是一次实验下的结果。不是0就是1.二:二项分布本质: 就是n次实验下的伯努利分布。期望和方差三:泊松分布1.引入很多场合下,我们感兴趣的试验进行了很多次,但其中成功的却原创 2020-11-08 21:37:50 · 7993 阅读 · 1 评论 -
概率论笔记(二)概率分布
文章目录一:随机变量的理解二:分布函数三:离散型分布四:连续型分布一:随机变量的理解注:其实随机变量就是一个实数,它是把随机事件映射成了一个实数,方便表示!!!二:分布函数注: 随机变量是一个数,此时事件利用数来表示了,这样在其基础上,我们就可以利用将其事件的概率(数的大小)转换成一个函数,主要是关于小x的函数。而分布函数就是一个事件累计的过程,也就是概率累计的过程。这里的事件累计可以看成是多个随机事件的组成。三:离散型分布1.离散事件2.分布函数3.例子四:连续型原创 2020-11-08 19:39:14 · 1429 阅读 · 0 评论 -
概率论笔记(一)重要公式
文章目录一:基本公式二:互斥事件三:独立事件四:条件概率五:全概率公式六:贝叶斯公式一:基本公式二:互斥事件三:独立事件1.什么是独立注:独立,如:今天中午下雨的概率和你玩不玩游戏的概率,毫无关系,可以认为是两个不同的维度的比较;而互斥,你12点去吃饭或者去玩游戏,同一维度,只能有一个发生。2.公式四:条件概率1.理解2.公式五:全概率公式六:贝叶斯公式总结:可以看到其实所谓的全概率公式和贝叶斯公式其实就是简单的条件概率和基本概率的推导,由条件概率原创 2020-11-08 19:11:43 · 1744 阅读 · 0 评论