线性代数
文章平均质量分 83
Studying_swz
-
展开
-
线性代数(四)向量空间
注意:必须是方阵!!!!!!!!!原创 2024-07-10 20:59:44 · 961 阅读 · 0 评论 -
半正定矩阵和正定矩阵的一些理解和补充
文章目录一:半正定矩阵二:正定矩阵3.直观理解正定、半正定矩阵一:半正定矩阵设A是实对称矩阵。如果对任意的实非零列向量x有xTAx≥0,就称A为半正定矩阵。 等价条件: &nbs原创 2020-12-05 17:19:20 · 10155 阅读 · 0 评论 -
线性代数(七)对称矩阵和二次型
文章目录一:对称矩阵的对角化1.1定义1.2对称矩阵对角化1.3正交对角化1.4谱定理1.5谱分解二:二次型2.1定义2.2例子2.3二次型的变量代换2.4主轴定理2.5二次型分类2.6特征值和二次型分类三:奇异值分解一:对称矩阵的对角化1.1定义注:对于对角化可以参照,https://blog.csdn.net/qq_37534947/article/details/1096203781.2对称矩阵对角化注:对于之前对角化,P应该是列向量是A的线性无关的特征向量,这里说明了当矩阵A是原创 2020-11-15 22:39:50 · 5083 阅读 · 0 评论 -
线性代数(六)正交性
文章目录一:内积、长度、正交性1.1内积1.2长度1.3正交向量1.4总结二:正交集2.1定义2.2定理--正交基2.3正交投影2.4单位正交集三:正交矩阵3.1单位正交列向量3.2性质3.3正交矩阵初入门四:拉格姆-施密特方法4.1定义4.2步骤4.3例子4.4QR分解一:内积、长度、正交性1.1内积1.定义:2.定理:注:从上面的性质可以简单总结出其是符合“对加法、对乘法封闭的”。1.2长度1.定义:2.单位向量3.n维空间的距离1.3正交向量注:补充定理原创 2020-11-15 16:25:55 · 12465 阅读 · 1 评论 -
线性代数(五)特征值和特征向量
文章目录一:特征值与特征向量二:特征方程2.1行列式求解的另一种方法--初等变换2.2可逆矩阵定理以及行列式性质的补充2.3特征方程![在这里插入图片描述](https://img-blog.csdnimg.cn/20201111151913734.png#pic_center)2.4相似性三:对角化一:特征值与特征向量1.定义:注:必须是方阵!!!2.给定特征值求特征向量:注:已知特征值,可利用行化简求特征向量,即此时的齐次方程有无穷解则有特征向量,即一个特征值对应多个特征向量。原创 2020-11-11 15:26:13 · 16373 阅读 · 0 评论 -
线性代数(三)行列式
文章目录一:行列式简介二:行列式的性质三:克拉默法则、体积和线性变化一:行列式简介1.定义:前提:方阵A可逆------------A的行列式非02.行列式求法:即包含按行展开和按列展开:3.三角矩阵的行列式二:行列式的性质根据这些性质可以得出求行列式的另一种方法,就是利用初等行变化,其中过程中要有变号、K倍的计算,最后化简为三角矩阵,利用三角矩阵的性质直接求出行列式的值。三:克拉默法则、体积和线性变化1.克拉默法则求行列式注:该法则其实对手工计算没有什么原创 2020-11-04 19:46:27 · 1409 阅读 · 0 评论 -
线性代数(二)矩阵代数
文章目录一:矩阵运算二:矩阵的逆三:向量方程四:矩阵方程五:线性方程组的解集六:阶段总结七:线性无关一:矩阵运算1.和与标量运算:这里比较简单,就不再赘述。2.矩阵乘法:本质:其实就是线性变化,线性变化见:https://blog.csdn.net/qq_37534947/article/details/1094513903.矩阵的乘幂4.矩阵的转置:二:矩阵的逆1.阶梯型以及行简化阶梯型任何非0矩阵都可以行化简为阶梯形矩阵、但用不同的方法可以化为不同的阶梯形矩阵原创 2020-11-03 22:12:07 · 1413 阅读 · 0 评论 -
线性代数(一)矩阵和方程组
文章目录一:线性方程组二:行化简与阶梯形矩阵三:向量方程四:矩阵方程五:线性方程组的解集六:阶段总结七:线性无关一:线性方程组1.线性方程:2.解的情况:3.系数矩阵、增广矩阵:系数矩阵:方程组对应的系数组成的矩阵。增广矩阵:方程组对应的系数以及最后的常数组成的矩阵。4.求解线性方程组:基本思想:初等行变换:注:可以对比一下基本思想和初等行变换,其实本质是一样的,因为求结过程是一样的,所以对于等价的矩阵来说,其具有相同的解集。其实很重要的一点,就是行变换是可逆的:5原创 2020-11-02 17:44:16 · 8121 阅读 · 1 评论