Pytorch和数据加载器

今天我们来谈谈,当我们拥有数据集时,如何对这数据集进行处理,将数据集放入模型中进行预测。
要加载数据并转换为可以进行训练的格式,这常常时数据科学中占用我们相当多时间的领域之一。Pytorch开发了与数据交互的标准约定,所以能一致地处理数据,不论是处理图像、文本还是音频。
与数据交互的两个主要约定是数据集(dataset)和数据加载器(data loaders)。数据集是一个Python类,使我们能够获得能够提供给神经网络的数据。数据加载器则是从数据集向网络提供数据(这可能包干很多信息,比如有多少个工作进程向网络提供数据?或者一次传入多少个图像)。
那么我们如何与Pytorch进行交互呢?请看下面的这个抽象Python类:

class Dataset(object):
  def _getitem_(self,index):
     rasise NotImplementedError
  def _len_(self):
    raise NotImplementedError

我们要实现一个方法返回数据集大小(len),另外要实现一个方法从数据集获取一个元素,作为一个(label,tensor)对返回。数据加载器向神经网络提供数据进行训练时会调用这个方法。所以我们可以写出getitem的方法体,接受一个图像,将它转换为一个张量,再返回这个张量和标签,以便Pytorch进行处理。基于此,Pytorch能让我们更轻松地完成这些工作
:文章摘选自《基于Pytorch的深度学习》Ian Pointer著

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛毛真nice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值