高等数学——常用结论(3)

13 多元函数微分学

拉格朗日函数求最值时,可以根据目标函数的具体形式来选择与其相同的目标点,但是形式更为简易的函数,以方便后续求解:

  1. u n \sqrt[n]{u} nu 考虑用 u u u
  2. u 1 ⋅ u 2 ⋅ u 3 u_1\cdot u_2 \cdot u_3 u1u2u3考虑用 ln ⁡ u 1 + ln ⁡ u 2 + ln ⁡ u 3 \ln u_1 +\ln u_2 +\ln u_3 lnu1+lnu2+lnu3代替
  3. ∣ u ∣ |u| u考虑用 u 2 u^2 u2代替

对于 n n n维函数(考研中多为2维或3维)的带约束的最值问题的2点技巧(以2维为例):

  1. 未知参数与方程数均是 2 + 1 = 3 2+1=3 2+1=3个,但要注意最后一个方程是不含有拉格朗日因子 λ \lambda λ的,前两个方程是含有 x , y , λ x,y,\lambda x,y,λ的方程。特别地,如果 x , y x,y x,y没有耦合在一起,且最高系数均为1,则可以将其视为 n n n个未知数, n n n个方程的含参线性方程。这里可以令系数行列式为0求解非0解时的参数,从而不必两边同除以某个参数时,单独讨论被除数是否为0。求出 λ \lambda λ后,如果从前两个式子中反解出 x , y , λ x,y,\lambda x,y,λ的关系,可代入第三个式子具体求解。
  2. 如果问题中只让求最优函数 d ( x , y ) d(x,y) d(x,y)的最值,而没问此时的 x , y x,y x,y,则有时直接求 d ( x , y ) d(x,y) d(x,y)可能更为简便:

例:令最优函数为 d = x 2 + y 2 d=\sqrt{x^2+y^2} d=x2+y2 ,拉格朗日函数为 L = x 2 + y 2 + λ ( x 2 − 4 x y + 5 y 2 − 1 ) L=x^2+y^2+\lambda(x^2-4xy+5y^2-1) L=x2+y2+λ(x24xy+5y21),秋裤

解:易有:

L x ′ = x + λ x − 2 λ y = 0 L y ′ = y − 2 λ x + 5 λ y = 0 L λ ′ = x 2 − 4 x y + 5 y 2 − 1 = 0 \begin{aligned} &L_x'=x+\lambda x-2\lambda y=0\\ &L_y'=y-2\lambda x+5\lambda y=0\\ &L_{\lambda}'=x^2-4xy+5y^2-1=0\\ \end{aligned} Lx=x+λx2λy=0Ly=y2λx+5λy=0Lλ=x24xy+5y21=0

由式1,2可得方程组:

( 1 + λ ) x − 2 λ y = 0 − 2 λ x + ( 1 + 5 λ ) y = 0 \begin{aligned} &(1+\lambda)x-2\lambda y=0\\ &-2\lambda x+(1+5\lambda)y=0\\\end{aligned} (1+λ)x2λy=02λx+(1+5λ)y=0

由于 ( 0 , 0 ) (0,0) (0,0)显然不是第一个方程组的解,所以要让方程组有非0解,即令行列式为0,有 λ 2 + 6 λ + 1 = 0 \lambda^2+6\lambda+1=0 λ2+6λ+1=0,解之有 λ = − 3 ± 2 2 \lambda=-3 \pm 2\sqrt{2} λ=3±22

如果 λ \lambda λ比较好计算,那么从第二个方程组实际上可以算出来 y = 1 + λ 2 λ x y=\frac{1+\lambda}{2\lambda}x y=2λ1+λx,再代入第三个式子,并加上 y 2 y^2 y2求得 d 2 = x 2 + y 2 d^2=x^2+y^2 d2=x2+y2,但是太难计算了,考虑tips2。

x 2 + y 2 + λ ( x 2 − 4 x y + 5 y 2 ) = 0 ⇒ x 2 + y 2 = − λ ⇒ d = − λ x^2+y^2+\lambda(x^2-4xy+5y^2)=0 \Rightarrow x^2+y^2=-\lambda \Rightarrow d=\sqrt{-\lambda} x2+y2+λ(x24xy+5y2)=0x2+y2=λd=λ

即将前两个式子变换后,可以将第三个式子代入,直接求得关于最优函数的变换式。

偏导顺序的改变有时可简化运算,求具体点的偏导提前代入别的不会偏导到的变量能简化运算(但是偏导相关变量不能提前代入)

多元极值判别式 b 2 − a c b^2-ac b2ac实效时,应根据定义或配方来判断是否为极值

给定 f ( x , y ) f(x,y) f(x,y)在区域 D D D上的性质,要确定定点 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)相关的式子(等式或不等式),一般有两种做法:

假设 f ( 0 , 0 ) = 0 f(0,0)=0 f(0,0)=0 f ( x , y ) f(x,y) f(x,y)与路径无关

  1. 凑项各自用拉中:

    f ( x , y ) = f ( x , y ) − f ( 0 , 0 ) = [ f ( x , y ) − f ( 0 , y ) ] + [ f ( 0 , y ) − f ( 0 , 0 ) ] = f x ′ ( ζ x , y ) x + f y ′ ( 0 , ζ y ) y f(x,y)=f(x,y)-f(0,0)=[f(x,y)-f(0,y)]+[f(0,y)-f(0,0)]=f_x'(\zeta_x,y)x+f_y'(0,\zeta_y)y f(x,y)=f(x,y)f(0,0)=[f(x,y)f(0,y)]+[f(0,y)f(0,0)]=fx(ζx,y)x+fy(0,ζy)y

  2. 曲线积分:

    f ( x , y ) − f ( 0 , 0 ) = ∫ ( 0 , 0 ) ( x , y ) d [ f ( u , v ) ] = ∫ ( 0 , 0 ) ( x , y ) f u ′ d u + f v ′ d v f(x,y)-f(0,0)=\int_{(0,0)}^{(x,y)}d[f(u,v)]=\int_{(0,0)}^{(x,y)}f_u'du+f_v'dv f(x,y)f(0,0)=(0,0)(x,y)d[f(u,v)]=(0,0)(x,y)fudu+fvdv

    之后选取方便路径即可

求多阶偏微分的技巧

  1. 求多元偏微分时,记得及时代入无关的值,这样往往会出现大量的0,可以大幅度节约时间。一般一阶偏导完完整整写下来,二阶偏导开始就可以提前代入无关变量了。

    例:设 f ( x , y ) f(x,y) f(x,y)有二阶连续偏导,且有 f ( 0 , 0 ) = 0 , f x ′ ( 0 , 0 ) = f y ′ ( 0 , 0 ) = 1 f(0,0)=0,f_x'(0,0)=f_y'(0,0)=1 f(0,0)=0,fx(0,0)=fy(0,0)=1,若 g ( x , y ) = f ( e x y − 1 , x 2 + y 2 ) g(x,y)=f(e^{xy}-1,x^2+y^2) g(x,y)=f(exy1,x2+y2),试在 ( 0 , 0 ) (0,0) (0,0) g ( x , y ) g(x,y) g(x,y)是否取到极值

    解:一阶偏微分比较容易求,直接求:

    g x ′ ( x , y ) = y e x y f 1 ′ ( e x y − 1 , x 2 + y 2 ) + 2 x f 2 ′ ( e x y − 1 , x 2 + y 2 ) g y ′ ( x , y ) = x e x y f 1 ′ ( e x y − 1 , x 2 + y 2 ) + 2 y f 2 ′ ( e x y − 1 , x 2 + y 2 ) \begin{aligned} &g'_x(x,y)=ye^{xy}f_1'(e^{xy}-1,x^2+y^2)+2xf_2'(e^{xy}-1,x^2+y^2)\\ &g'_y(x,y)=xe^{xy}f_1'(e^{xy}-1,x^2+y^2)+2yf_2'(e^{xy}-1,x^2+y^2)\\ \end{aligned} gx(x,y)=yexyf1(exy1,x2+y2)+2xf2(exy1,x2+y2)gy(x,y)=xexyf1(exy1,x2+y2)+2yf2(exy1,x2+y2)

    求二阶偏导时,提前代入能省大量运算:

    g x ′ ( x , 0 ) = 2 x f 2 ′ ( 0 , x 2 ) ⇒ g x x ′ ′ ( x , 0 ) = 2 [ f 2 ′ ( 0 , x 2 ) + x f 22 ′ ′ ( 0 , x 2 ) 2 x ] ⇒ g x x ′ ′ ( 0 , 0 ) = 0 g_x'(x,0)=2xf_2'(0,x^2) \Rightarrow g_{xx}''(x,0)=2[f_2'(0,x^2)+xf_{22}''(0,x^2)2x] \Rightarrow g_{xx}''(0,0)=0 gx(x,0)=2xf2(0,x2)gxx(x,0)=2[f2(0,x2)+xf22(0,x2)2x]gxx(0,0)=0

    有对称性有 g y y ′ ′ = 2 g_{yy}''=2 gyy=2,同理可得 g x y ′ ′ ( 0 , 0 ) = 1 g_{xy}''(0,0)=1 gxy(0,0)=1

  2. 当偏导过于复杂时,也可以考虑命临时变量,这样会思路清晰一点,但并不会减少运算,要减少运算,还是要提前代入数值。

  3. 注意对称性

14 二重积分

轮换对称性的基本公式仅与积分区域有关与被积函数无关,即只要被积函数关于 y = x y=x y=x对称,总有:

∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ = 1 2 [ ∬ D f ( x , y ) d σ + ∬ D f ( y , x ) d σ ] \iint\limits_Df(x,y)d\sigma=\iint\limits_Df(y,x)d\sigma=\frac{1}{2}[\iint\limits_Df(x,y)d\sigma+\iint\limits_Df(y,x)d\sigma] Df(x,y)dσ=Df(y,x)dσ=21[Df(x,y)dσ+Df(y,x)dσ]

无显式参数方程的二重积分计算法:

有的积分区域 D D D用参数方程 { x = x ( t ) y = y ( t ) \begin{cases} &x=x(t)\\ &y=y(t)\\ \end{cases} {x=x(t)y=y(t)来表示,且无法显式表示为 y = y ( x ) y=y(x) y=y(x),若此时要求二重积分 ∬ D f ( x , y ) d σ \iint_Df(x,y)d\sigma Df(x,y)dσ,可以考虑用虚拟记号 y = y ( x ) y=y(x) y=y(x)来代表曲线进行表示(仅是记号,具体表达未知),经累次积分化为定积分时再代入 x = x ( t ) x=x(t) x=x(t)

∬ D f ( x , y ) d σ = ∫ a b d x ∫ 0 y ( x ) f ( x , y ) d y = ∫ a b g ( x ) d x ( 再 代 入 x = x ( t ) ) \iint_Df(x,y)d\sigma=\int_a^bdx\int_0^{y(x)}f(x,y)dy=\int_a^bg(x)dx(再代入x=x(t)) Df(x,y)dσ=abdx0y(x)f(x,y)dy=abg(x)dxx=x(t)

PS:二重积分的计算不可以直接代入参数方程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-haTwDVY6-1668577651426)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/6248f53a-9c51-4166-a7b8-952b6adcba06/Untitled.png)]

注意二重积分的极坐标变换与定积分的极坐标变换的不同:

  1. 二重积分化为 { x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases} &x=r\cos \theta\\ &y=r\sin \theta\\ \end{cases} {x=rcosθy=rsinθ,这里 r , θ r,\quad \theta r,θ是两个不同的变量(所以是二重积分)
  2. 定积分是化为 { x = a cos ⁡ θ y = a sin ⁡ θ \begin{cases} &x=a\cos \theta\\ &y=a\sin \theta\\ \end{cases} {x=acosθy=asinθ,这里只有 θ \theta θ一个变量(所以是定积分)

求旋转轴非坐标轴的旋转体体积,可以考虑重新构建坐标系(对旋转轴进行旋转平移)来简化运算。

积分优先考虑对称性(奇偶+轮换)

轮换对称性可用于凑项,凑项之后可以将整体化简

除了算式起始用对称,计算过程中有时也可以用对称性

利用积分与积分符号无关,可以将二次积分化为二重积分,之后可以利用二重积分的对称性等相关知识进行简化

有时题目中给出的原始算式是极坐标,但是区域即不是圆,被积函数又无平方和,这是可以考虑逆变换为直角坐标系

被积函数为圆域,被积函数有平方和,二者满足一个就可以考虑用极坐标系

类似于级数的级数求和,拆项判敛,积分对称也有拆项对称

偏心被积函数要不要定义偏心极坐标

对于积分区域或被积函数有偏心圆的情况下,以被积函数简化为目的去选取极坐标方程:

  1. 对于 ∬ D x 2 + y 2 d σ \iint\limits_D\sqrt{x^2+y^2}d\sigma Dx2+y2 dσ,不论 D D D是偏心还是非偏心圆域,令 { x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases} &x=r\cos \theta\\ &y=r\sin \theta\\ \end{cases} {x=rcosθy=rsinθ更简单。
  2. 对于 ∬ D ( x − a ) 2 + y 2 d σ \iint\limits_D\sqrt{(x-a)^2+y^2}d\sigma D(xa)2+y2 dσ,不论 D D D是偏心还是非偏心圆域,令 { x = a + r cos ⁡ θ y = r sin ⁡ θ \begin{cases} &x=a+r\cos \theta\\ &y=r\sin \theta\\ \end{cases} {x=a+rcosθy=rsinθ更简单。
  3. 对于被积函数无平方和的,偏心极坐标与非偏心极坐标不一定哪个更简单

当遇见含有二重积分的极限分式时,可以考虑将二重积分化为定积分,转换为定积分极限分式求求解(即可以考虑用洛必达,又可以考虑用积中)

二重积分可以转化为二次积分求解,不要忘了有些题目也可以二次转二重再求解(之后可以考虑对称性或者换坐标求解)

三角区域二重积分的处理

对于正三角形区域(如: D = { ( x , y ) ∣ 0 ≤ y ≤ 1 , 0 ≤ x ≤ y } D=\{(x,y)|0 \leq y \leq1,0 \leq x \leq y\} D={(x,y)0y1,0xy}),如果遇见二重积分 I = ∬ D f ( x ) f ( y ) d σ I=\iint\limits_D f(x)f(y)d\sigma I=Df(x)f(y)dσ相关式子,可以考虑补对称区域,之后寻找整体正方形上的积分与原积分式的关系(因为正方形上的积分限都是 [ 0 , 1 ] [0,1] [0,1],有时可以很方便地化为累次积分)。

有些题目寻找不出额外的关系,可以考虑定义变上限积分 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_0^xf(t)dt F(x)=0xf(t)dt,这样在三角形区域上进行积分时,正好可以有 I = ∫ 0 1 F ( x ) d x I=\int_0^1F(x)dx I=01F(x)dx,方便进一步计算:

例1:设 f ( x ) f(x) f(x)为连续的正值函数, I = ∫ 0 1 f ( x ) d x = ∬ D f ( x ) f ( y ) d σ , D = { ( x , y ) ∣ 0 ≤ y ≤ 1 , 0 ≤ x ≤ y } I=\int_0^1f(x)dx=\iint\limits_D f(x)f(y)d\sigma,D=\{(x,y)|0 \leq y \leq1,0 \leq x \leq y\} I=01f(x)dx=Df(x)f(y)dσ,D={(x,y)0y1,0xy},证明 I = 2 I=2 I=2

假设对称三角形区域为 D 2 D_2 D2,两个区域合起来为 D 总 D_总 D,易有:

∬ D f ( x ) f ( y ) d σ = ∬ D 2 f ( x ) f ( y ) d σ = 1 2 [ ∬ D f ( x ) f ( y ) d σ + ∬ D 2 f ( x ) f ( y ) d σ ] = 1 2 ∬ D 总 f ( x ) f ( y ) d σ = 1 2 [ ∫ 0 1 f ( x ) d x ] 2 \begin{aligned} \iint\limits_D f(x)f(y)d\sigma&=\iint\limits_{D_2} f(x)f(y)d\sigma=\frac{1}{2}[\iint\limits_{D} f(x)f(y)d\sigma+\iint\limits_{D_2} f(x)f(y)d\sigma]\\ &=\frac{1}{2}\iint\limits_{D_总} f(x)f(y)d\sigma=\frac{1}{2}[\int_0^1f(x)dx]^2\\\end{aligned} Df(x)f(y)dσ=D2f(x)f(y)dσ=21[Df(x)f(y)dσ+D2f(x)f(y)dσ]=21Df(x)f(y)dσ=21[01f(x)dx]2

即有: I = 1 2 I 2 I=\frac{1}{2}I^2 I=21I2

例2:设函数在闭区间 [ a , b ] [a,b] [a,b]上连续,且 ∣ f ( x ) ∣ ≤ M |f(x) |\leq M f(x)M ∫ a b f ( x ) d x = 0 \int_a^bf(x)dx=0 abf(x)dx=0 D = { ( x , y ) ∣ a ≤ y ≤ x , a ≤ x ≤ b } D=\{(x,y)|a \leq y \leq x,a \leq x \leq b\} D={(x,y)ayx,axb},证明 ∣ ∬ D f ( y ) d x d y ∣ ≤ M 4 ( b − a ) 2 |\iint\limits_Df(y)dxdy| \leq \frac{M}{4}(b-a)^2 Df(y)dxdy4M(ba)2

解:令 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)dt F(x)=axf(t)dt,易有: ∬ D f ( y ) d x d y = ∫ a b F ( x ) d x , F ′ ( x ) = f ( x ) , F ( a ) = F ( b ) = 0 \iint\limits_Df(y)dxdy=\int_a^bF(x)dx,\quad F'(x)=f(x), \quad F(a)=F(b)=0 Df(y)dxdy=abF(x)dxF(x)=f(x),F(a)=F(b)=0

x ∈ ( a , b ) x \in (a,b) x(a,b)将区间分割为两部分,在这两部分区间上分别使用拉中可得:

F ( x ) = f ( ζ 1 ) ( x − a ) F ( x ) = − f ( ζ 2 ) ( b − x ) \begin{aligned} &F(x)=f(\zeta_1)(x-a)\\ &F(x)=-f(\zeta_2)(b-x)\\\end{aligned} F(x)=f(ζ1)(xa)F(x)=f(ζ2)(bx)

即有:

∣ ∬ D f ( y ) d x d y ∣ = ∣ ∫ a b F ( x ) d x ∣ = ∣ ∫ a a + b 2 F ( x ) d x + ∫ a + b 2 b F ( x ) d x ∣ \begin{aligned} |\iint\limits_Df(y)dxdy|=&|\int_a^bF(x)dx|=|\int_a^{\frac{a+b}{2}}F(x)dx+\int_{\frac{a+b}{2}}^bF(x)dx|\\ \end{aligned} Df(y)dxdy=abF(x)dx=a2a+bF(x)dx+2a+bbF(x)dx

之后将讲述两个式子代入放缩即可

15 微分方程

不定积分的原函数之间可能只差一个常数,但是微分方程的原函数不一定

求全微分方程 P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy=0 P(x,y)dx+Q(x,y)dy=0的原函数 u ( x , y ) u(x,y) u(x,y)共有三种方法:

  1. 换路径:

    u ( x , y ) − u ( x 0 , y 0 ) = ∫ ( x 0 , y 0 ) ( x , y ) d u ( u , v ) = ∫ x 0 x P ( u , y 0 ) d u + ∫ y 0 y Q ( x , v ) d v = C u(x,y)-u(x_0,y_0)=\int_{(x_0,y_0)}^{(x,y)}du(u,v)=\int_{x_0}^xP(u,y_0)du+\int_{y_0}^yQ(x,v)dv=C u(x,y)u(x0,y0)=(x0,y0)(x,y)du(u,v)=x0xP(u,y0)du+y0yQ(x,v)dv=C

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JWspkcoV-1668577651430)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/a2893fc0-38f7-46a7-846c-6bf6f36beaf3/Untitled.png)]

  1. 凑微分:

    通过拼凑 P d x + Q d y = d u Pdx+Qdy=du Pdx+Qdy=du,来获得 u u u

  2. 偏积分:

    { ∂ u ∂ x = P ( x , y ) ∂ u ∂ y = Q ( x , y ) \begin{cases} &\frac{\partial u}{\partial x}=P(x,y)\\ &\frac{\partial u}{\partial y}=Q(x,y)\\ \end{cases} {xu=P(x,y)yu=Q(x,y)分别偏积分,再项数对照得到 u u u

对于含任意常数 a a a的复杂等式 f ( x , a ) = 0 f(x,a)=0 f(x,a)=0,要研究 f ( x ) f(x) f(x)的性质,除了将 a a a代入特殊值将 x x x视为变量外,还可以考虑将 x x x代入特殊值,将 a a a视为自变量

微分方程对 ∫ 1 f d f \int \frac{1}{f}df f1df积分后可得 ln ⁡ ∣ f ∣ \ln |f| lnf,等式两端脱 ln ⁡ \ln ln后,绝对值的拖去有时可反映在任意常数 C C C

注意求解微分方程常数时,有时会有隐含的条件,比如一端是根号,一端是常数这种,如果任意常数都解出多个可能值,那就要找寻运算过程的遗漏,如:

已知 y ( 0 ) = 1 , 2 y − 1 = x + C y(0)=1,\sqrt{2y-1}=x+C y(0)=1,2y1 =x+C,求 C C C

解:如果直接代入原式子,有 C = 1 C=1 C=1,但是如果化为 y = ( x + C ) 2 + 1 2 y=\frac{(x+C)^2+1}{2} y=2(x+C)2+1,那么就求出 C = ± 1 C= \pm1 C=±1,但是 C C C不可以为-1,因为0是函数的点,应该有 0 + C ≥ 0 0+C\geq0 0+C0,而直接平方则去掉了这个约束

再比如,如果已知道 y ( 0 ) = y ′ ( 0 ) = 1 y(0)=y'(0)=1 y(0)=y(0)=1,那么由 y = 1 2 [ 1 + ( y ′ ) 2 ] y=\frac{1}{2}[1+(y')^2] y=21[1+(y)2]开方应为 y ′ = 2 y − 1 y'=\sqrt{2y-1} y=2y1 ,这里的符号由于初值的约束,进行了舍去

注意有时需要通过常系数微分方程的特解,推出特征方程满足的式子,注意虚数根的处理,即:

若有特征根 α ± β i \alpha \pm \beta i α±βi,那么特征方程一定有因子 ( λ − α ) 2 + β (\lambda-\alpha)^2+\beta (λα)2+β,因为:

λ = α ± β i ⇒ ( λ − α ) 2 = − β ⇒ ( λ − α ) 2 + β = 0 \lambda=\alpha \pm \beta i \Rightarrow (\lambda-\alpha)^2=-\beta \Rightarrow (\lambda-\alpha)^2+\beta=0 λ=α±βi(λα)2=β(λα)2+β=0

16 无穷级数

常用和函数:

∑ n = 1 ∞ x n = x 1 − x , ∣ x ∣ < 1 ∑ n = 1 ∞ n x n = x ∑ n = 1 ∞ n x n − 1 = x ( ∑ n = 1 ∞ x n ) ′ = x ( 1 − x ) 2 , ∣ x ∣ < 1 ∑ n = 1 ∞ n 2 x n = x ( ∑ n = 1 ∞ n 2 x n − 1 ) = x ( ∑ n = 1 ∞ n x n ) ′ \begin{aligned} &\sum\limits_{n=1}^{\infty}x^n=\frac{x}{1-x}, \quad|x|<1\\ &\sum\limits_{n=1}^{\infty}nx^{n}=x\sum\limits_{n=1}^{\infty}nx^{n-1}=x(\sum\limits_{n=1}^{\infty}x^n)'=\frac{x}{(1-x)^2}, \quad|x|<1\\ &\sum\limits_{n=1}^{\infty}n^2x^n=x(\sum\limits_{n=1}^{\infty}n^2x^{n-1})=x(\sum\limits_{n=1}^{\infty}nx^{n})'\\ &\\\end{aligned} n=1xn=1xx,x<1n=1nxn=xn=1nxn1=x(n=1xn)=(1x)2x,x<1n=1n2xn=x(n=1n2xn1)=x(n=1nxn)

注意有些虽然用到了先积分后求导的技巧,但是由于积分太过简单,所以可以简化,如下面:

∑ n = 1 ∞ n x n − 1 = ( ∑ n = 1 ∞ x n ) ′ \sum\limits_{n=1}^{\infty}nx^{n-1}=(\sum\limits_{n=1}^{\infty}x^n)' n=1nxn1=(n=1xn)

题目中遇见无限和式时,要想到以下等式,方便求和函数:

含 阶 乘 { 连 续 项 阶 乘 : e x = ∑ n = 0 ∞ x n n ! 隔 项 奇 阶 乘 : sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! 隔 项 偶 阶 乘 : cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! 无 阶 乘 { 有 关 于 n 的 系 数 : ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n x n + 1 ( n + 1 ) ! , x ∈ ( − 1 , 1 ] 无 关 于 n 的 系 数 : 1 1 ± x = ∑ n = 0 ∞ ( ∓ x ) n \begin{aligned} &含阶乘\begin{cases} &连续项阶乘:e^x=\sum\limits_{n=0}^\infty\frac{x^{n}}{n!}\\ &隔项奇阶乘:\sin x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}\\ &隔项偶阶乘:\cos x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}\\ \end{cases}\\ &无阶乘 \begin{cases} &有关于n的系数:\ln {(1+x)}=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{n+1}}{(n+1)!}, \quad x \in(-1,1]\\ &无关于n的系数:\frac{1}{1 \pm x}=\sum\limits_{n=0}^\infty(\mp x)^n\\ \end{cases} \end{aligned} :ex=n=0n!xn:sinx=n=0(1)n(2n+1)!x2n+1:cosx=n=0(1)n(2n)!x2nn:ln(1+x)=n=0(1)n(n+1)!xn+1,x(1,1]n:1±x1=n=0(x)n

偶函数在0点的泰勒展开仅有偶次项( 2 , 4 , 6 , ⋯ 2,4,6,\cdots 2,4,6,
奇函数在0点的泰勒展开仅有奇次项( 1 , 3 , 5 , ⋯ 1,3,5,\cdots 1,3,5,

变上限三角函数绝对值积分,可以划分区间,用 ( − 1 ) k (-1)^k (1)k去绝对值:

a n = ∫ 0 n π ∣ sin ⁡ x ∣ d x = ∑ i = 0 n − 1 ∫ i π ( i + 1 ) π ( − 1 ) i sin ⁡ x d x a_n=\int_0^{n\pi}|\sin x|dx=\sum\limits_{i=0}^{n-1}\int_{i\pi}^{(i+1)\pi}(-1)^i\sin xdx an=0nπsinxdx=i=0n1iπ(i+1)π(1)isinxdx

数列 { a n } \{a_n\} {an}收敛是指:存在 a a a,使得 lim ⁡ n → ∞ a n = a \lim\limits_{n \rightarrow \infty}a_n=a nliman=a

级数 S n = ∑ i = 1 n a n S_n=\sum\limits_{i=1}^na_n Sn=i=1nan收敛是指:存在 lim ⁡ n → ∞ S n = a 1 + a 2 + ⋯ + a n = a \lim\limits_{n \rightarrow \infty}S_n=a_1+a_2+\cdots+a_n=a nlimSn=a1+a2++an=a

且这两者的 a a a都不一定趋于0

对于不好积分项的积分级数的判敛,多考虑将该项放缩后用比较判别法

莱布尼茨判别法中判断增减性的常用方法:

  1. 坐差

  2. 坐商

  3. 用函数思想

  4. 如果 a n a_n an的双边范围与 n n n相关,那么可以考虑利用双边界限来判断级数相邻项的大小关系:

    1 n + 1 < a n < 1 n ⇒ a n + 1 < 1 n + 1 a n \frac{1}{n+1} <a_n <\frac{1}{n} \Rightarrow a_{n+1}<\frac{1}{n+1}a_n n+11<an<n1an+1<n+11an

正项级数的判敛,一般情况还是求 n → ∞ n \rightarrow \infty n的等价无穷小更为方便,特别地、针对含幂或阶乘的技术,考虑达朗贝尔(自比)。对于 f ( n ) g ( n ) f(n)^{g(n)} f(n)g(n),考虑柯西判别法

有一类题目要求证 f n ( x ) = 0 , n = 1 , 2 , ⋯   , ∞ f_n(x)=0, \quad n=1,2,\cdots,\infty fn(x)=0,n=1,2,,成立,若是已经给出了要证明的通项,而”获得该通项的形式较难,证明通项成立较易“,可以考虑数学归纳法

对于含三角函数的级数,可以考虑内部 + n π , − n π +n\pi,-n\pi +nπ,nπ再变形,以将内部变量固定到某一范围内,之后再将多个 n π n\pi nπ项,利用三角函数性质化为 ( − 1 ) n (-1)^n (1)n提出:

sin ⁡ ( π n 2 + a 2 ) = sin ⁡ [ n π + ( n 2 + a 2 − n ) π ] = ( − 1 ) n sin ⁡ π a 2 n 2 + a 2 + n \sin(\pi \sqrt{n^2+a^2})=\sin [n\pi+(\sqrt{n^2+a^2}-n)\pi]=(-1)^n\sin\frac{\pi a^2}{\sqrt{n^2+a^2}+n} sin(πn2+a2 )=sin[nπ+(n2+a2 n)π]=(1)nsinn2+a2 +nπa2

对于交错级数的判敛,先判断是否绝收(有些级数判断绝收可能要更简单,或者是绝收,原级数一定收敛,更高级,一步到位),不绝收在用莱判

有些级数直接判断敛散性不好判断,可以考虑拆为多个级数,分别判敛

并不是含有 ( − 1 ) n (-1)^n (1)n的级数都可以用莱判,因为有的级数不单调,而证明不单调的方法,有时只要取特殊点,看出不单调即可:

a n = 1 n + ( − 1 ) n ⇒ 2 + 1 > 3 − 1 < 4 + 1 ⇒ a n 不 单 调 a_n=\frac{1}{\sqrt{n}+(-1)^n} \Rightarrow \sqrt{2}+1>\sqrt{3}-1<\sqrt{4}+1 \Rightarrow a_n不单调 an=n +(1)n12 +1>3 1<4 +1an

事实上,分母有理化化后可去除分母的 ( − 1 ) n (-1)^n (1)n,分子再拆项分别判敛即可

大题幂级数相关的题目最后勿忘带上收敛域

有些积分与求导直接求不好求,可以展开后再积分求导,然后再求和函数

有些级数(尤其是幂级数,或者是给了递推式的级数)与微分方程联系,这时有时“主动求导+换元”可以出现相邻级数项,此时可能构成微分方程

注意级数知识与函数思想的联系:

  1. 先斩后奏求极限具体值的函数思想

    有时先斩后奏,对式子取极限后,得到 a n a_n an的极限 a a a满足 f ( a ) = 0 f(a)=0 f(a)=0,如果该方程无法直接把 a a a放到一端解出,可以考虑代入特殊点求 a a a,并求证明 f ( x ) = 0 f(x)=0 f(x)=0单调,有且仅有这一个根

  2. 有函数变换的级数的增减性的函数思想

    可以考虑令式子出现的级数具有统一下标,再用函数求导解决,例如:

    假设 a 1 = 1 , a n + 1 = sin ⁡ a n < a n a_1=1,a_{n+1}=\sin a_n<a_n a1=1,an+1=sinan<an,证明 b n = sin ⁡ ( a n − a n + 1 ) b_n=\sin ({a_n-a_{n+1}}) bn=sin(anan+1)的单调性:

    b n = sin ⁡ ( a n − sin ⁡ a n ) b_n=\sin{(a_n-\sin a_n)} bn=sin(ansinan)

    这里可令函数 f ( x ) = sin ⁡ ( x − sin ⁡ x ) f(x)=\sin (x- \sin x) f(x)=sin(xsinx),通过函数单调性,判断 b n b_n bn单调性

    PS:可以用来给莱判判断单调性

注意有些求和函数的题目,最后写 S ( x ) S(x) S(x)表达式时需要分段

比如求出的 S ( x ) S(x) S(x)中含有 1 x \frac{1}{x} x1,但是给出的 ∑ a ( x ) \sum a(x) a(x)却可以取0,那么此时显然要将 S ( x ) S(x) S(x)写为:

S ( x ) = { S ( x ) , x ≠ 0 ∑ a ( 0 ) , x = 0 S(x)=\begin{cases} S(x),\quad &x \neq0 \\ \sum a(0), \quad &x=0 \end{cases} S(x)={S(x),a(0),x=0x=0

要证明三角级数与普通函数想等,考虑泰展

a n > 0 a_n>0 an>0,有:

∑ a n 收 ⇒ ∑ a 2 n 收 ∑ a n 发 ⇒ ∑ a 2 n 发 \begin{aligned} &\sum a_n收 \Rightarrow \sum a_{2n}收\\ &\sum a_n发 \Rightarrow \sum a_{2n}发\\ \end{aligned} ana2nana2n

积分判别法多用于形如 ∑ 1 n ln ⁡ n \sum \frac{1}{n \ln n} nlnn1

条收的前提是不绝收

显式级数 ∑ a n \sum a_n an的判敛,有一种简单的情况就是直接求 n → ∞ n \rightarrow \infty n a n a_n an的形如 ( 1 n ) p (\frac{1}{n})^p (n1)p的等价无穷小级数,通过 p p p来判断其敛散性

仅级数收敛时才可以比较大小,即:

u n < v n ( n = 1 , 2 , ⋯   , ∞ ) ⇏ ∑ 1 ∞ u n < ∑ 1 ∞ v n u_n<v_n(n=1,2,\cdots,\infty)\nRightarrow \sum\limits_1^\infty u_n < \sum\limits_1^\infty v_n un<vn(n=1,2,,)1un<1vn

假设 S ( x ) = ∑ 0 ∞ a n x n S(x)=\sum\limits_{0}^\infty a_nx^n S(x)=0anxn,有结论:

$$
\begin{cases}
&S(x)奇\Rightarrow

S(x)=\sum\limits_1^\infty a_{2n-1}x^{2n-1}\
&S(x)偶\Rightarrow

S(x)=\sum\limits_0^\infty a_{2n}x^{2n}\
\end{cases}

$$

有些情况下,得到了无法用现有知识求解的 S ( x ) S(x) S(x)的微分方程表达式(如: S ′ − 2 x S = 1 S'-2xS=1 S2xS=1,此时一阶微方通解会出现 ∫ e − t 2 d t \int e^{-t^2}dt et2dt),此时若知道 S ( x ) S(x) S(x)的参数形式,可以考虑用对照参数法求解参数:
假设 S ( x ) = ∑ 0 ∞ a n x n , S ′ ( x ) − 2 x S ( x ) = 1 S(x)=\sum\limits_{0}^\infty a_nx^n,\quad S'(x)-2xS(x)=1 S(x)=0anxn,S(x)2xS(x)=1,且 S ( x ) S(x) S(x)为奇函数,那么有:

∑ 1 ∞ [ ( 2 n + 1 ) a 2 n + 1 − 2 a 2 n − 1 ] x 2 n + ( a 1 − 1 ) = 0 \sum\limits_{1}^{\infty}[(2n+1)a_{2n+1}-2a_{2n-1}]x^{2n}+(a_1-1)=0 1[(2n+1)a2n+12a2n1]x2n+(a11)=0

由对照系数即可得到系数表达式

注意比值判别法与根值判别法只是级数收敛的充分条件

求幂级数 ∑ u n ( x − a ) n \sum u_n(x-a)^n un(xa)n收敛域时,若计算得 R = 0 R=0 R=0,不是说不收敛,而是在 x − a = 0 x-a=0 xa=0出收敛
若幂级数 ∑ u n ( x − a ) n \sum u_n(x-a)^n un(xa)n收敛,若计算的收敛半径为 R R R,则应该判断的边界是 R ± a R \pm a R±a,而不是 x ± a x \pm a x±a

收敛域的求解也可以将级数拆开,求各自的收敛域,之后取交集

和函数变形的一些技巧:

  1. 对于含有分式阶乘的幂级数 ∑ 0 ∞ a n x n \sum\limits_{0}^{\infty}a_nx^n 0anxn,幂次 n n n的增减通过提项即可,而阶乘 n ! n! n!的阶数的增减,可以通过分子分母同时乘项来实现:

    如:

    ∑ n = 0 ∞ ( x − 1 ) n + 1 n ! = ∑ n = 0 ∞ ( n + 1 ) ( x − 1 ) n + 1 ( n + 1 ) ! \sum\limits_{n=0}^{\infty}\frac{(x-1)^{n+1}}{n!}=\sum\limits_{n=0}^{\infty}\frac{(n+1)(x-1)^{n+1}}{(n+1)!} n=0n!(x1)n+1=n=0(n+1)!(n+1)(x1)n+1

  2. 幂级数 ∑ 1 ∞ a n x n \sum\limits_{1}^{\infty}a_nx^n 1anxn补项时,若 a n = 0 a_n=0 an=0,那么自然可以补为 ∑ 0 ∞ a n x n \sum\limits_{0}^{\infty}a_nx^n 0anxn,且注意 0 ! = 1 ! = 1 0!=1!=1 0!=1!=1,如果 a n a_n an中有阶乘的话可能会用到。

    如:

    ∑ n = 0 ∞ ( x − 1 ) n + 1 n ! = ∑ n = 0 ∞ ( n + 1 ) ( x − 1 ) n + 1 ( n + 1 ) ! = ∑ n = 1 ∞ n ( x − 1 ) n n ! = ∑ n = 0 ∞ n ( x − 1 ) n n ! \sum\limits_{n=0}^{\infty}\frac{(x-1)^{n+1}}{n!}=\sum\limits_{n=0}^{\infty}\frac{(n+1)(x-1)^{n+1}}{(n+1)!}=\sum\limits_{n=1}^{\infty}\frac{n(x-1)^{n}}{n!}=\sum\limits_{n=0}^{\infty}\frac{n(x-1)^{n}}{n!} n=0n!(x1)n+1=n=0(n+1)!(n+1)(x1)n+1=n=1n!n(x1)n=n=0n!n(x1)n

    这样的技巧有时可以帮助两个和函数并项为一个幂级数,如:

    ∑ n = 0 ∞ [ ( x − 1 ) n + 1 n ! + ( x − 1 ) n n ! ] = ∑ n = 0 ∞ [ ( x − 1 ) n + 1 n ! + n ( x − 1 ) n n ! ] = ∑ n = 0 ∞ ( n + 1 ) ( x − 1 ) n n ! ] \sum\limits_{n=0}^{\infty}[\frac{(x-1)^{n+1}}{n!}+\frac{(x-1)^n}{n!}]=\sum\limits_{n=0}^{\infty}[\frac{(x-1)^{n+1}}{n!}+\frac{n(x-1)^{n}}{n!}]=\sum\limits_{n=0}^{\infty}\frac{(n+1)(x-1)^{n}}{n!}] n=0[n!(x1)n+1+n!(x1)n]=n=0[n!(x1)n+1+n!n(x1)n]=n=0n!(n+1)(x1)n]

    注意这才是关于 ( x − 1 ) n (x-1)^n (x1)n的幂级数,如果化成 ∑ n = 0 ∞ ( x − 1 ) n ( x + 1 ) n ! ] \sum\limits_{n=0}^{\infty}\frac{(x-1)^{n}(x+1)}{n!}] n=0n!(x1)n(x+1)],由于不是 ∑ a n ( x − a ) n \sum\limits_{}^{}a_n(x-a)^n an(xa)n的形式,它不算是幂级数

f ( x ) f(x) f(x)展开为幂级数,常用两种做法:

  1. 直接法:求泰勒系数,并证明余项在 n → ∞ n \rightarrow \infty n时为0

  2. 间接法:利用函数展开为幂级数的唯一性和常用函数的幂级数,借助幂级数的四则运算、逐项求导、逐项积分记忆变量代换等方法,求得函数的幂级数的展开式

  3. 当要求将 S ( x ) S(x) S(x)展开为指定项 x + a x+a x+a的幂级数时,比较推荐的是令 t = x + a t=x+a t=x+a然后再展开,可以计算上简单一点。

  4. 如果是要求幂级数 ∑ a n x n \sum\limits_{}^{}a_nx^n anxn关于 x + a x+a x+a的展开式的,有时可以先求和函数 S ( x ) S(x) S(x),再在这个层面进行变形,再展开

  5. 结果形如 ∑ a n x n \sum\limits_{}^{}a_nx^n anxn,才可以称为幂级数

    如:

    eq:

    ∑ 0 ∞ x ( x − 1 ) n n ! = ∑ 0 ∞ ( x − 1 + 1 ) ( x − 1 ) n n ! = ∑ n = 0 ∞ ( n + 1 ) ( x − 1 ) n n ! ] \sum\limits_{0}^{\infty}\frac{x(x-1)^n}{n!}=\sum\limits_{0}^{\infty}\frac{(x-1+1)(x-1)^n}{n!}=\sum\limits_{n=0}^{\infty}\frac{(n+1)(x-1)^{n}}{n!}] 0n!x(x1)n=0n!(x1+1)(x1)n=n=0n!(n+1)(x1)n]

    只有最后的一个式子是幂级数

对于形如 ∑ ( a n + 1 − a n ) \sum(a_{n+1}-a_n) (an+1an)的级数,很多都是直接展开然后消项的

对于交错级数,如果莱判失效,那么可以考虑将和的级数拆解为级数的和

有些绝对收敛的应用比较隐晦:

直接问要判断级数的敛散性,并没有问是否绝对收敛时,若出现级数项符号不好判断的情况时,当取绝对值后可以将符号固定后,也要记得主动应用绝对收敛的性质

不等式:

∣ a n n ∣ ≤ 1 2 ( a n 2 + 1 n 2 ) ∣ a n a n + 1 ∣ ≤ 1 2 ( a n 2 + a n + 1 2 ) \begin{aligned}&|\frac{a_n}{n}|\leq \frac{1}{2}(a_n^2+\frac{1}{n^2})\\ &|a_na_{n+1}| \leq \frac{1}{2}(a_n^2+a^2_{n+1})\\ \end{aligned} nan21(an2+n21)anan+121(an2+an+12)

注意 ∑ 1 ∞ a n \sum\limits_{1}^{\infty}a_n 1an条收,等价于 ∑ 1 ∞ a n 1 n \sum\limits_{1}^{\infty}a_n1^n 1an1n条收,即幂级数 ∑ 1 ∞ a n x n \sum\limits_{1}^{\infty}a_nx^n 1anxn的收敛半径为1

注意求经常用到特殊级数 S n = ∑ i = 1 n ( a i + 1 − a i ) = a n + 1 − a 1 S_n=\sum\limits_{i=1}^{n}(a_{i+1}-a_i)=a_{n+1}-a_1 Sn=i=1n(ai+1ai)=an+1a1,如果这里 lim ⁡ x → ∞ a n = constant \lim\limits_{x \rightarrow \infty}a_n=\text{constant} xliman=constant,那么显然级数收敛。而对于形如 S n = ∑ i = 1 n ( a i + 1 − a i ) 2 S_n=\sum\limits_{i=1}^{n}(a_{i+1}-a_i)^2 Sn=i=1n(ai+1ai)2的式子,则可以考虑构造级数 ∑ i = 1 n ( a i + 1 − a i ) \sum\limits_{i=1}^{n}(a_{i+1}-a_i) i=1n(ai+1ai),然后运用比较判别法。

若级数 ∑ n = 1 ∞ ( − 1 ) n − 1 a n \sum\limits_{n=1}^{\infty}(-1)^{n-1}a_n n=1(1)n1an条件收敛,且 a n > 0 a_n>0 an>0,那么有:

$$
\begin{aligned}
&\sum\limits_{n=1}{\infty}|(-1){n-1}a_n|=\sum\limits_{n=1}^{\infty}a_n发散\
&\sum\limits_{n=1}{\infty}a_{2n-1}与\sum\limits_{n=1}{\infty}a_{2n}均发散\

\end{aligned}
$$

遇见绝对值(如绝对收敛)和平方式,不要忘记基本不等式 ∣ a n ∣ ≤ 1 + a n 2 2 |a_n| \leq \frac{1+a_n^2}{2} an21+an2

注意比较判别法要求 n > N n>N n>N时,均有 a n < b n a_n<b_n an<bn;而比较判别法的极限形式仅要求一个极限即可,后者简便很多。

注意如果求出了 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty} a_n n=1an的和,那么这个这个级数就是收敛的。在大题中如果先让求了这个级数的和,后面要判断另一个级数敛散性,可以考虑用这个作为已知收敛的级数进行比较判别法。

对于形如 ∑ x n n ( n + 1 ) \sum\limits_{}^{}\frac{x^n}{n(n+1)} n(n+1)xn的级数,自然知道用先导后积,但是下面形式的级数:

∑ x n 2 n ( 2 n + 1 ) , x > 0 \sum\limits_{}^{}\frac{x^n}{2n(2n+1)},{\kern 5pt}x>0 2n(2n+1)xn,x>0

仍然是先导后积,只不过需要稍微变形:

∑ ( x 2 ) 2 n 2 n ( 2 n + 1 ) \sum\limits_{}^{}\frac{(\frac{x}{2})^{2n}}{2n(2n+1)} 2n(2n+1)(2x)2n

对于先导后积的级数,可以考虑令一个 S ( x ) S(x) S(x),双边操作,后面积分时方便加观察:

例:求级数 ∑ n = 1 ∞ x n n ( n + 1 ) \sum\limits_{n=1}^{\infty}\frac{x^n}{n(n+1)} n=1n(n+1)xn在区间 [ − 1 , 1 ] [-1,1] [1,1]上的和函数:

解:令 S ( x ) = ∑ n = 1 ∞ x n n ( n + 1 ) S(x)=\sum\limits_{n=1}^{\infty}\frac{x^n}{n(n+1)} S(x)=n=1n(n+1)xn,显然是先导后积,且有 x S ( x ) = ∑ n = 1 ∞ x n + 1 n ( n + 1 ) xS(x)=\sum\limits_{n=1}^{\infty}\frac{x^{n+1}}{n(n+1)} xS(x)=n=1n(n+1)xn+1,先导:

[ x S ( x ) ] ′ = ∑ n = 1 ∞ x n n [ x S ( x ) ] ′ ′ = ∑ n = 1 ∞ x n − 1 = 1 1 − x , ∣ x ∣ < 1 \begin{aligned} &[xS(x)]'=\sum\limits_{n=1}^{\infty}\frac{x^n}{n}\\ &[xS(x)]''=\sum\limits_{n=1}^{\infty}x^{n-1}=\frac{1}{1-x},{\kern 5pt}|x|<1 \end{aligned} [xS(x)]=n=1nxn[xS(x)]=n=1xn1=1x1,x<1

后积:

∫ 0 x [ x S ( x ) ] ′ ′ = ∫ 0 x 1 1 − x d x ⇒ [ x S ( x ) ] ′ − [ 0 S ( 0 ) ] ′ = − ln ⁡ ( 1 − x ) ∫ 0 x [ x S ( x ) ] ′ = ∫ 0 x − ln ⁡ ( 1 − x ) d x ⇒ [ x S ( x ) ] − [ 0 S ( 0 ) ] = ( 1 − x ) ln ⁡ ( 1 − x ) + x \begin{aligned} &\int_{0}^{x}[xS(x)]''=\int_{0}^{x}\frac{1}{1-x}dx \Rightarrow[xS(x)]'-[0S(0)]'=-\ln(1-x)\\ &\int_{0}^{x}[xS(x)]'=\int_{0}^{x}-\ln(1-x)dx\Rightarrow[xS(x)]-[0S(0)]=(1-x)\ln(1-x)+x \end{aligned} 0x[xS(x)]=0x1x1dx[xS(x)][0S(0)]=ln(1x)0x[xS(x)]=0xln(1x)dx[xS(x)][0S(0)]=(1x)ln(1x)+x

即有:

x S ( x ) = ( 1 − x ) ln ⁡ ( 1 − x ) + x , ∣ x ∣ < 1 S ( x ) = 1 + ( 1 − x ) x ln ⁡ ( 1 − x ) , ∣ x ∣ < 1 且 x ≠ 0 \begin{aligned} &xS(x)=(1-x)\ln(1-x)+x,{\kern 5pt}|x|<1\\ &S(x)=1+\frac{(1-x)}{x}\ln(1-x),{\kern 5pt}|x|<1且x \neq0 \end{aligned} xS(x)=(1x)ln(1x)+x,x<1S(x)=1+x(1x)ln(1x),x<1x=0

至于 x = ± 1 , 0 x= \pm1,0 x=±1,0时的 S ( x ) S(x) S(x),需要从定义式 S ( x ) = ∑ n = 1 ∞ x n n ( n + 1 ) S(x)=\sum\limits_{n=1}^{\infty}\frac{x^n}{n(n+1)} S(x)=n=1n(n+1)xn计算,实际上 S ( x ) S(x) S(x)的表达式为一分段函数

对于简单的先积后导,则可以直接看出来,如:

∑ n = 1 ∞ n x n = x ∑ n = 1 ∞ n x n − 1 = x ( ∑ n = 1 ∞ x n ) ′ \sum\limits_{n=1}^{\infty}nx^n=x\sum\limits_{n=1}^{\infty}nx^{n-1}=x(\sum\limits_{n=1}^{\infty}x^n)' n=1nxn=xn=1nxn1=x(n=1xn)

其实步骤上仍然是先积后导,只不过由于积分过于简单,直接看出来就好了

对于求非幂级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an,可以考虑将其中关于 n n n次幂的底数设为 x x x,转换为求幂级数 ∑ n = 1 ∞ a n ( x ) \sum\limits_{n=1}^{\infty}a_n(x) n=1an(x)的和函数的问题(这样方便求导和积分)。

如:可以将求 ∑ n = 1 ∞ ( n + 2 ) e − n \sum\limits_{n=1}^{\infty}(n+2)e^{-n} n=1(n+2)en的问题转化为求 ∑ n = 1 ∞ ( n + 2 ) x − n ( x = e − 1 ) \sum\limits_{n=1}^{\infty}(n+2)x^{-n}{\kern 5pt}(x=e^{-1}) n=1(n+2)xn(x=e1)的问题

注意有些超越方程虽然解不出来解析解,但是有极限解。

如:1. 超越方程 e x + x 2 n + 1 = 0 e^x+x^{2n+1}=0 ex+x2n+1=0虽然无解析解,但是它的根 x n x_n xn满足 x n = − e x n 2 n + 1 x_n=-e^{\frac{x_n}{2n+1}} xn=e2n+1xn,当 n → ∞ n \rightarrow \infty n时,显然有极限 x n = − 1 x_n=-1 xn=1,虽然将 − 1 -1 1代进去也貌似也不对。

  1. 进一步地, ∑ ( x n + 1 ) = ∑ ( 1 − e x n 2 n + 1 ) \sum\limits_{}^{}(x_n+1)=\sum\limits_{}^{}(1-e^{\frac{x_n}{2n+1}}) (xn+1)=(1e2n+1xn)用比较判别法的极限形式也可以判别出来其发散

注意一类特殊的收敛域为 R R R的幂级数的证明:

若有 ∣ a n ∣ < ∣ b n ∣ |a_n|<|b_n| an<bn,且幂级数 ∑ b n x n \sum\limits_{}^{}b_nx^n bnxn的收敛域为 R R R,那么幂级数 ∑ a n x n \sum\limits_{}^{}a_nx^n anxn的收敛域也为 R R R

注意要思路清晰, S ( 0 ) S(0) S(0) a 0 a_0 a0 S ( 1 ) S(1) S(1) a 1 a_1 a1一般都不相等,用微分方程法求 S ( x ) S(x) S(x),求解任意常数时,不要掉入这个坑里

注意换元求和函数时,先积后导,或者先导后积中的“导”,并不需要再乘一个链式法则的因子,只需要正常地在换元后的式子里用求和函数技巧,变成用还原后的变量表示的式子,最后再统一换元

遇见级数与单个项的和差,有时可以考虑利用 x n = ( x n − x n − 1 ) + ( x n − 2 − x n − 3 ) + ⋯ + ( x 2 − x 1 ) x_n=(x_n-x_{n-1})+(x_{n-2}-x_{n-3})+\cdots+(x_2-x_1) xn=(xnxn1)+(xn2xn3)++(x2x1),将单个项化为 n n n项和式,再将二者合并在一起

例:已知 a n = 1 + 1 2 + 1 3 + ⋯ + 1 n − 2 n a_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}-2\sqrt{n} an=1+2 1+3 1++n 12n ,证明 { a n } \{a_n\} {an}收敛

解:考虑将这个级数化为和函数的形式,再用和函数的比较判别法的极限形式:

a n = 1 + 1 2 + 1 3 + ⋯ + 1 n − 2 n = 1 + 1 2 + 1 3 + ⋯ + 1 n − 2 [ ( n − n − 1 ) + ( n − 1 − n − 2 ) + ⋯ + ( 1 − 0 ) ] = [ 1 n − 2 ( n − n − 1 ) ] + [ 1 n − 1 − 2 ( n − 2 − n − 3 ) ] + ⋯ + [ 1 − 2 ( 1 − 0 ) ] \begin{aligned} a_n&=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}-2\sqrt{n}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}-2[(\sqrt{n}-\sqrt{n-1})+(\sqrt{n-1}-\sqrt{n-2})+\cdots+(\sqrt{1}-\sqrt{0})]\\ &=[\frac{1}{\sqrt{n}}-2(\sqrt{n}-\sqrt{n-1})]+[\frac{1}{\sqrt{n-1}}-2(\sqrt{n-2}-\sqrt{n-3})]+\cdots+[1-2(1-0)]\\ \end{aligned} an=1+2 1+3 1++n 12n =1+2 1+3 1++n 12[(n n1 )+(n1 n2 )++(1 0 )]=[n 12(n n1 )]+[n1 12(n2 n3 )]++[12(10)]

将上面的式子通分后,即可写为和函数 ∑ \sum\limits_{}^{} 的形式,之后再用和函数的比较判别法的极限形式即可

注意一类给定和函数的幂级数(如: ∑ a n x n = f ( x ) \sum\limits_{}^{}a_nx^n=f(x) anxn=f(x)),让求 a n , a n + 1 ⋯ a_n,a_{n+1} \cdots an,an+1相关的式子

  1. 让求 a n , a n + 1 ⋯ a_n,a_{n+1} \cdots an,an+1之间的关系,可以考虑移项,项数对照

例:已知 ∑ 0 ∞ a n x n = 1 1 − x − x 2 \sum\limits_{0}^{\infty}a_nx^n=\frac{1}{1-x-x^2} 0anxn=1xx21,求证 a 0 = a 1 = 1 , a n + 2 = a n + 1 + a n a_0=a_1=1,a_{n+2}=a_{n+1}+a_n a0=a1=1,an+2=an+1+an

解:由于不是常见和函数,本题似乎没办法通过 1 1 − x − x 2 \frac{1}{1-x-x^2} 1xx21求出级数展开式,对于方程整体求导后构造的等式也十分复杂,但是移项后变为:

∑ 0 ∞ a n x n ( 1 − x − x 2 ) = 1 ⇒ ∑ 0 ∞ a n x n − ∑ 0 ∞ a n x n + 1 − ∑ 0 ∞ a n x n + 2 = 1 \sum\limits_{0}^{\infty}a_nx^n(1-x-x^2)=1 \Rightarrow \sum\limits_{0}^{\infty}a_nx^n-\sum\limits_{0}^{\infty}a_nx^{n+1}-\sum\limits_{0}^{\infty}a_nx^{n+2}=1 0anxn(1xx2)=10anxn0anxn+10anxn+2=1

再对级数进行变形,使得幂均变为 x n + 2 x^{n+2} xn+2,并且求和起始点相同,方便合并同类项,变形为:

( a 0 + a 1 x + ∑ 0 ∞ a n + 2 x n + 2 ) − ( a 0 x + ∑ 0 ∞ a n + 1 x n + 2 ) − ∑ 0 ∞ a n x n + 2 = 1 (a_0+a_1x+\sum\limits_{0}^{\infty}a_{n+2}x^{n+2})-(a_0x+\sum\limits_{0}^{\infty}a_{n+1}x^{n+2})-\sum\limits_{0}^{\infty}a_nx^{n+2}=1 (a0+a1x+0an+2xn+2)(a0x+0an+1xn+2)0anxn+2=1

之后对照系数即可

  1. 让求 a n a_n an具体表达式,可以将 f ( x ) f(x) f(x)展开为幂级数(多为常见幂级数,或者常见幂级数的求导、积分),再项数对照

    例:已知 S ( x ) = ∑ n = 1 ∞ a n x 2 n S(x)=\sum\limits_{n=1}^{\infty}a_nx^{2n} S(x)=n=1anx2n x 2 S ′ ′ ( x ) − x S ′ ( x ) + S ( x ) = x 2 − x 4 ( 1 + x 2 ) 2 x^2S''(x)-xS'(x)+S(x)=\frac{x^2-x^4}{(1+x^2)^2} x2S(x)xS(x)+S(x)=(1+x2)2x2x4,试求 a n a_n an表达式:

    解:首先容易求得 x 2 S ′ ′ ( x ) − x S ′ ( x ) + S ( x ) = ∑ n = 1 ∞ ( 2 n − 1 ) 2 a n x 2 n + 4 x^2S''(x)-xS'(x)+S(x)=\sum\limits_{n=1}^{\infty}(2n-1)^2a_nx^{2n+4} x2S(x)xS(x)+S(x)=n=1(2n1)2anx2n+4,由于 x 2 − x 4 ( 1 + x 2 ) 2 \frac{x^2-x^4}{(1+x^2)^2} (1+x2)2x2x4是常见和函数,考虑套公式展开

    x 2 − x 4 ( 1 + x 2 ) 2 = − x 2 1 + x 2 + 2 x 2 ( 1 + x 2 ) 2 = − x 2 1 1 + x 2 − x ( 1 1 + x 2 ) ′ = ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 n − 1 ) x 2 n \frac{x^2-x^4}{(1+x^2)^2}=\frac{-x^2}{1+x^2}+\frac{2x^2}{(1+x^2)^2}=-x^2\frac{1}{1+x^2}-x(\frac{1}{1+x^2})'=\sum\limits_{n=1}^{\infty}(-1)^{n-1}(2n-1)x^{2n} (1+x2)2x2x4=1+x2x2+(1+x2)22x2=x21+x21x(1+x21)=n=1(1)n1(2n1)x2n

    再由项数对照即可得 a n a_n an

n → ∞ n \rightarrow \infty n时, n > ln ⁡ 2 n n> \ln^2 n n>ln2n,由比较判别法的极限形式,可以知道级数 ∑ 1 ln ⁡ 2 n \sum\limits_{}^{}\frac{1}{\ln^2n} ln2n1发散

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值