7 一元函数微分学的应用(一)——物理应用于经济应用
8 一元函数积分学的概念与性质
考研中反常积分的判敛参考积分就是 p p p积分,且积分范围为 ∫ 0 1 \int_{0}^{1} ∫01或 ∫ 1 ∞ \int_{1}^{\infty} ∫1∞,如果题目中的积分范围不是这个范围,就
反常积分的比较判别法的极限形式,逼近的极限是瑕点
反常积分出题一般出判敛类问题,即只让判断收敛与否。但是有的题目要求求反常积分的积分值,在这种情况下记得及时察觉,并在瑕点处分区间,
例:设 f ( x ) = arctan x + 1 x − 1 f(x)=\arctan\frac{x+1}{x-1} f(x)=arctanx−1x+1,求积分 ∫ 0 2 f ′ ( x ) f 2 ( x ) d x \int_{0}^{2}\frac{f'(x)}{f^2(x)}dx ∫02f2(x)f′(x)dx:
解:注意到1是奇点,有:
∫ 0 2 = ∫ 0 1 + ∫ 1 2 = − 1 f ( x ) ∣ 0 1 − − 1 f ( x ) ∣ 1 + 2 \int_{0}^{2}=\int_{0}^{1}+\int_{1}^{2}=-\frac{1}{f(x)}\mid_0^{1^-}-\frac{1}{f(x)}\mid_{1^+}^2 ∫02=∫01+∫12=−f(x)1∣01−−f(x)1∣1+2
然后求极限即可
注意二重积分的极限定义式解法,利用等量代换让思路更清晰
如:
I = lim n → ∞ ∑ i = 1 n ∑ j = 1 2 n 2 n 2 f ( 2 i + j n ) = lim n → ∞ ∑ i = 1 n ∑ j = 1 2 n 2 n 1 n f ( 2 i n + j n ) I=\lim\limits_{n \rightarrow \infty}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{2n}\frac{2}{n^2}f(\frac{2i+j}{n})=\lim\limits_{n \rightarrow \infty}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{2n}\frac{2}{n}\frac{1}{n}f(\frac{2i}{n}+\frac{j}{n}) I=n→∞limi=1∑nj=1∑2nn22f(n2i+j)=n→∞limi=1∑nj=1∑2nn2n1f(n2i+nj)
令 x = 2 i n , y = j n x=\frac{2i}{n},y=\frac{j}{n} x=n2i,y=nj,易有 Δ x = 2 n , Δ y = 1 n \Delta x=\frac{2}{n},\Delta y=\frac{1}{n} Δx=n2,Δy=n1,有积分区域为 D = { ( x , y ) ∣ 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 } D=\{(x,y)|0 \leq x \leq 2,0\leq y \leq 2\} D={(x,y)∣0≤x≤2,0≤y≤2},即:
I = ∫ 0 2 d x ∫ 0 2 f ( x + y ) d y I=\int_{0}^{2}dx\int_{0}^{2}f(x+y)dy I=∫02dx∫02f(x+y)dy
当已知含参无穷积分的积分值,要求这个参数,那么首先有条件——这是个收敛积分,可以考虑首要用常用对照积分去比较,然后得出关系式
如:对于积分 1 = ∫ 1 ∞ f ( x , a , b ) d x 1=\int_{1}^{\infty}f(x,a,b)dx 1=∫1∞f(x,a,b)dx,那么可以将 lim x → ∞ f ( x , a , b ) \lim\limits_{x \rightarrow \infty}f(x,a,b) x→∞limf(x,a,b)与 1 x p \frac{1}{x^p} xp1进行比较
9 一元函数积分学的计算
一种特殊积分的计算:
F ( x ) = ∫ e a x sin b x d x = ∣ ( e a x ) ′ ( sin b x ) ′ e a x sin b x ∣ a 2 + b 2 + C \begin{aligned} &F(x)=\int e^{ax}\sin bxdx=\frac{ \left| \begin{array}{cc} (e^{ax})'& (\sin bx)'\\ e^{ax}& \sin bx \end{array} \right| }{a^2+b^2}+C\\ &\\ \end{aligned} F(x)=∫eaxsinbxdx=a2+b2∣∣∣∣(eax)′eax(sinbx)′sinbx∣∣∣∣+C
若上下限为 ∫ a b \int_a^b ∫ab,则结果为 F ( b ) − F ( a ) F(b)-F(a) F(b)−F(a)
概率论常用积分:
∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty}e^{-x^2}dx=\sqrt \pi ∫−∞+∞e−x2dx=π
两种常用函数:
{ B e t a 函 数 : ∫ 0 1 x m − 1 ( 1 − x ) n − 1 d x G a m m a 函 数 : Γ ( n ) = ∫ 0 ∞ e − x x n − 1 d x 性 质 : { B ( m , n ) = B ( n , m ) = Γ ( m ) Γ ( n ) Γ ( m + n ) Γ ( n ) = ( n − 1 ) ! , Γ ( n ) = ( n − 1 ) Γ ( n ) Γ ( n + 1 2 ) = ( 2 n − 1 ) ! ! 2 n π , Γ ( 1 2 ) = ( π ) \begin{cases} Beta函数:&\int_0^1x^{m-1}(1-x)^{n-1}dx\\ Gamma函数:&\Gamma(n)=\int_0^\infty e^{-x}x^{n-1}dx\\ 性质:&\begin{cases} &B(m,n)=B(n,m)=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}\\ &\Gamma(n)=(n-1)!,\quad \Gamma(n)=(n-1)\Gamma(n) \\ &\Gamma(n+\frac{1}{2})=\frac{(2n-1)!!}{2^n}\sqrt \pi,\quad \Gamma(\frac{1}{2})=\sqrt{(\pi)} \end{cases} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Beta函数:Gamma函数:性质:∫01xm−1(1−x)n−1dxΓ(n)=∫0∞e−xxn−1dx⎩⎪⎨⎪⎧B(m,n)=B(n,m)=Γ(m+n)Γ(m)Γ(n)Γ(n)=(n−1)!,Γ(n)=(n−1)Γ(n)Γ(n+21)=2n(2n−1)!!π,Γ(21)=(π)
双阶乘与单阶乘转换:
( 2 n ) ! ! = ∏ k = 1 n ( 2 k ) = 2 n n ! ( 2 n − 1 ) ! ! = 2 n ! ( 2 n ) ! ! = ( 2 n ) ! 2 n ! \begin{aligned} (2n)!!&=\prod\limits_{k=1}^n(2k)=2^nn!\\ (2n-1)!!&=\frac{2n!}{(2n)!!}=\frac{(2n)!}{2^n!} \end{aligned} (2n)!!(2n−1)!!=k=1∏n(2k)=2nn!=(2n)!!2n!=2n!(2n)!
奇数双阶乘最终乘1,偶数双阶乘最终乘2
三角函数积分规律:
∫ 0 π 2 f ( sin x ) d x = ∫ 0 π 2 f ( cos x ) d x ∫ 0 π x f ( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x = π ∫ 0 π 2 f ( sin x ) d x ∫ 0 π f ( sin x ) d x = 2 ∫ 0 π 2 f ( sin x ) d x ∫ 0 π 2 x [ f ( sin x ) + f ( cos x ) ] d x = π 2 ∫ 0 π 2 f ( sin x ) d x \begin{aligned} &\int_0^{\frac{\pi}{2}}f(\sin x)dx=\int_0^{\frac{\pi}{2}}f(\cos x)dx\\ &\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx=\pi\int_0^{\frac{\pi}{2}}f(\sin x)dx\\ &\int_0^{\pi}f(\sin x)dx=2\int_0^{\frac{\pi}{2}}f(\sin x)dx\\ &\int_0^{\frac{\pi}{2}}x[f(\sin x)+f(\cos x)]dx=\frac{\pi}{2}\int_0^{\frac{\pi}{2}}f(\sin x)dx\\ \end{aligned} ∫02πf(sinx)dx=∫02πf(cosx)dx∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)dx∫0πf(sinx)dx=2∫02πf(sinx)dx∫02πx[f(sinx)+f(cosx)]dx=2π∫02πf(sinx)dx
有些积分经过分布积分后可转为递推式(尤其是 a n = ∫ a b f ( n , x ) d x a_n=\int_a^bf(n,x)dx an=∫abf(n,x)dx类)
对于部分形式已知但是较难计算的积分,勿忘放缩(常用不等式或者最值放缩)
由于三角函数的周期性,含三角函数的积分可考虑换元积分复现,积分比较大小时也可以换元位于同一基准线内,便于观察。
当积分比较大小类题目给出了抽象函数的二阶导数,可以考虑凹凸性质,如果给了一阶导数,可以考虑将其与线性函数对比
换元法计算不定积分,最后不要忘记再把换的元反代入积分。
有时和的积分拆为积分的和更为方便。
平移之后发现奇偶性:
即通过换元,将积分限化为对称形式,然后观察新形式下被积函数的奇偶性
分部积分法有求导的操作,所以如果已知不好直接求取的变上限积分 f ( x ) f(x) f(x),要求积分 ∫ g ′ ( x ) f ( x ) d x \int g'(x)f(x)dx ∫g′(x)f(x)dx,可以考虑凑微分,出现 f ′ ( x ) f'(x) f′(x)来求取
换元可以使部分反常积分变为定积分
三角函数进阶版:
对于 f 2 ( x ) ± 1 n , 1 − f 2 ( x ) n \sqrt[n]{f^2(x) \pm 1}, \sqrt[n]{1-f^2(x)} nf2(x)±1,n1−f2(x),令 f ( x ) f(x) f(x)为对应的三角函数
平方角公式可以把常数1吸收掉,三角函数的平方化(分母乘除同一个因子),也可以将常量1吸收掉
由于多项式函数与 e a x e^{ax} eax积分的特殊性(十分容易凑微分),有时直接凑微分比完全展开更简便
假设初始积分为 I 1 I_1 I1不好直接计算,分部积分后化为 I 2 = I 1 I_2=I_1 I2=I1,形式改变了,但是仍然不好计算,有时改写为 I 1 = I 1 + I 2 2 I_1=\frac{I_1+I_2}{2} I1=2I1+I2反而可能容易计算(有时会起到补项或者消项的效果)
表格法求不定积分的两种情况:
-
完全的表格积分法:
$$
\begin{aligned}
目标:\quad&I=\int u v(n)dx\
其中: \quad &
\begin{cases}
&u为方便积分的函数(多为e^{px},\sin px,\cos px)\
&v(n)=\sum\limits_{i=0}na_ixi(多项式函数,最终求导为0)
\end{cases}\
\end{aligned}
$$可以画出以下表格:
∣ v n ↘ ⊕ v n ( 1 ) ↘ ⊖ v n ( 2 ) ↘ ⊕ ⋯ ⋯ v n ( n ) ↘ ( − 1 ) n v n ( n + 1 ) = 0 ↓ ( − 1 ) n + 1 u ∫ u ∬ u ⋯ ⋯ ∫ ∫ ⋯ ∫ ⏟ n u ∫ ∫ ⋯ ∫ ⏟ n + 1 u ∣ \left | \begin{array}{c|c|c|c|c|} v_n\searrow_\oplus&v^{(1)}_n \searrow_\ominus&v^{(2)}_n\searrow_\oplus&\cdots {\kern 1pt}\cdots &v^{(n)}_n\searrow_{(-1)^n}&v_n^{(n+1)}=0\downarrow_{(-1)^{n+1}}\\ u&\int u &\iint u&\cdots {\kern 1pt}\cdots &\underbrace{\int\int\cdots\int}_{n} u&\underbrace{\int\int\cdots\int}_{n+1} u \end{array} \right | ∣∣∣∣∣∣∣∣vn↘⊕uvn(1)↘⊖∫uvn(2)↘⊕∬u⋯⋯⋯⋯vn(n)↘(−1)nn ∫∫⋯∫uvn(n+1)=0↓(−1)n+1n+1 ∫∫⋯∫u∣∣∣∣∣∣∣∣
其结果为:
I = ∫ u v ( n ) d x = v n ∫ u − v n ′ ∫ ∫ u + v n ′ ′ ∫ ∫ ∫ u − ⋯ + ( − 1 ) n v n ( n − 1 ) ∫ ∫ ⋯ ∫ ⏟ n u + ( − 1 ) ( n + 1 ) ∫ [ v n n ( ∫ ∫ ⋯ ∫ ⏟ n + 1 u ) ] I=\int u v(n)dx=v_n\int u-v'_n\int \int u+v''_n\int \int \int u-\cdots+(-1)^nv_n^{(n-1)}\underbrace{\int\int\cdots\int}_{n} u+(-1)^{(n+1)}\int [v_n^n\underbrace{(\int\int\cdots\int}_{n+1}u)] I=∫uv(n)dx=vn∫u−vn′∫∫u+vn′′∫∫∫u−⋯+(−1)nvn(n−1)n ∫∫⋯∫u+(−1)(n+1)∫[vnnn+1 (∫∫⋯∫u)]
由于最后一项的积分结果为0,所以这种完全的表格积分可以直接得出结果
-
不完全的表格积分法
这种常用于可积分复现的情况。
这种情况为“要么一个函数求导后形式不变,另一个函数积分后函数形式循环;要么两个函数积分和求导均循环’”
这种用表格法后可用代数法进行求解积分,列表参考第一种情况(唯一的区别在于表格不一定连续求导 n n n次,并且最终 v n ( k ) v_n^{(k)} vn(k)不一定为0)
有一种求解定积分的做法是,先将其逆变换为二重积分,再交换积分次序
见到复合抽象函数的积分尤其要想到换元法,如:
∫ a b sin f ( x ) d x \int_a^b \sin f(x)dx ∫absinf(x)dx,考虑让 f ( x ) = t f(x)=t f(x)=t,甚至让 sin f ( x ) = t \sin f(x)=t sinf(x)=t。
但是如果遇见形如 F ( f ( x ) , ∫ f ( x ) d x ) = 0 F(f(x),\int f(x)dx)=0 F(f(x),∫f(x)dx)=0的函数,可以考虑令 g ( x ) = ∫ f ( t ) d t g(x)=\int f(t) dt g(x)=∫f(t)dt,进而原式变为 F ( g ′ ( x ) , g ( x ) ) F(g'(x),g(x)) F(g′(x),g(x)),转换成微分等式(方便用微分方程方法求解)
注意正积分或者绝对值积分的积分限放缩:
0 < α < β < π ⇒ ∫ α β ∣ f ( x ) ∣ d x ≤ ∫ 0 π ∣ f ( x ) ∣ d x 0<\alpha<\beta<\pi \Rightarrow \int_\alpha^\beta|f(x)|dx \leq \int_0^\pi|f(x)|dx 0<α<β<π⇒∫αβ∣f(x)∣dx≤∫0π∣f(x)∣dx
级数与等式的关系:
注意平底起积分号的技巧,假设 f ( x ) f(x) f(x)单调递增,有 1 = ∫ 1 2 d x 1=\int_1^2dx 1=∫12dx,进而:
f ( 1 ) = ∫ 1 2 f ( 1 ) d x ≤ ∫ 1 2 f ( x ) d x ≤ ∫ 1 2 f ( 2 ) d x = f ( 2 ) ⇒ f ( 1 ) ≤ ∫ 1 2 f ( x ) d x ≤ f ( 2 ) \begin{aligned} &f(1)=\int_1^2f(1)dx \leq \int_1^2f(x)dx \leq \int_1^2f(2)dx=f(2)\\ \Rightarrow&f(1) \leq \int_1^2f(x)dx \leq f(2)\\ \end{aligned} ⇒f(1)=∫12f(1)dx≤∫12f(x)dx≤∫12f(2)dx=f(2)f(1)≤∫12f(x)dx≤f(2)
由于 ∑ k = 1 n − 1 ∫ k k + 1 f ( x ) d x = ∫ 1 2 + ∫ 2 3 + ⋯ + ∫ n − 1 n = ∫ 1 n f ( x ) d x \sum\limits_{k=1}^{n-1}\int_k^{k+1}f(x)dx=\int_1^2+\int_2^3+\cdots+\int_{n-1}^{n}=\int_1^nf(x)dx k=1∑n−1∫kk+1f(x)dx=∫12+∫23+⋯+∫n−1n=∫1nf(x)dx,进而:
∑ k = 1 n − 1 f ( k ) ≤ ∫ 1 n f ( x ) d x ≤ ∑ k = 1 n − 1 f ( k + 1 ) \sum\limits_{k=1}^{n-1}f(k) \leq \int_1^nf(x)dx \leq \sum\limits_{k=1}^{n-1}f(k+1) k=1∑n−1f(k)≤∫1nf(x)dx≤k=1∑n−1f(k+1)
面对积分等式,有时需要对式子整体进行求导操作,具体求导之前往往先对式子整体进行加减乘除变换,这样往往使得求导操作更为简单(往往函数加减的求导比函数相乘的求导简单,函数相乘的求导往往比函数相除的求导简单)
积分的上下限变量化不仅可以变上限,有时也可以变下限(哪个简单用哪个)
证明含 ln \ln ln的积分式时,常用到不等式 x > − 1 时 ln ( 1 + x ) > x x>-1时\ln (1+x)>x x>−1时ln(1+x)>x来消去 ln \ln ln(毕竟 ln \ln ln不能直接凑微分,用别的项凑分部积分也太简单了)
由于 sin x , cos x \sin x ,\cos x sinx,cosx多次求导后积分复现,故当积分式含有二者时,可以考虑多次求导来复现整个式子,再用微分方程的方法求解
对于反常积分的判敛,如果可以考虑放缩证明收敛(主要是放缩 sin x , ln x \sin x, \ln x sinx,lnx这一类),也可以考虑求不收敛点初,被积函数的 1 x p \frac{1}{x^p} xp1形式的等价无穷小,通过 p p p的大小来判断反常积分是否收敛(有点类似于判断级数敛散性的极限它比法)
对于积分量 d x dx dx的 x x x也可以看做一个单独的函数,所以理论上积分的计算无路可投了的话,可以考虑分部积分法(对于抽象函数积分 ∫ f ( x ) d x \int f(x)dx ∫f(x)dx尤为方便)
10 一元函数积分学的应用(一)——几何应用
如果能用割补法求面积,用不用取决于割补法能否简化运算;比如有一类题,整体的面积或体积可以用固定的公式求解(比如三角形面积,圆锥体积),那么此时就没必要列一大串式子求面积或旋转体积了,可以认为此时用割补法可以简便运算。
利用极坐标求旋转曲面侧面积、体积等公式时,注意不要过早代入 r ( θ ) r(\theta) r(θ)的具体表达式,因为后面可能直接整体消去了
11 一元函数积分学的应用(二)——积分等式与积分不等式
证明积分不等式常用的方法:
- 定积分不等式性质
- 变量代换
- 积分中值定理
- 变上限积分
- 柯西积分不等式
常用的积分不等式:
若 f ( x ) ≤ g ( x ) , 则 ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b f ( x ) d x ( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \begin{aligned} &若f(x) \leq g(x),\quad 则\int_a^bf(x)dx \leq \int_a^bg(x)dx\\ &m(b-a) \leq \int_a^bf(x)dx \leq M(b-a)\\ &|\int_a^bf(x)dx| \leq \int_a^bf(x)dx\\ &(\int_a^bf(x)g(x)dx)^2 \leq\int_a^bf^2(x)dx\int_a^bg^2(x)dx\\ \end{aligned} 若f(x)≤g(x),则∫abf(x)dx≤∫abg(x)dxm(b−a)≤∫abf(x)dx≤M(b−a)∣∫abf(x)dx∣≤∫abf(x)dx(∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx
注意积分上下限与被积变量有单调关系,如果被积函数也有单调性,那么有时可判断积分与0的大小
{ a ≤ t f ( x ) ↑ F ( t ) = ∫ a t [ f ( t ) − f ( x ) ] d x ⇒ F ( t ) ≥ 0 \begin{cases} &a \leq t\\ &f(x) \uparrow\\ &F(t)=\int_a^t[f(t)-f(x)]dx\\ \end{cases} \Rightarrow F(t) \geq 0 ⎩⎪⎨⎪⎧a≤tf(x)↑F(t)=∫at[f(t)−f(x)]dx⇒F(t)≥0
证明积分不等式时,可以先证明内层无积分号的不等式,最后再求积分
积分中有时会让积分上下限变复杂,但只要被积函数变简单了就行(反正上下限后面直接代入就行了)