高等数学——自总结结论(4)

17 多元函数积分学的预备知识

一般式曲线方程 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} &F(x,y,z)=0\\ &G(x,y,z)=0\\ \end{cases} {F(x,y,z)=0G(x,y,z)=0求某点的切向量:

  1. 化为参数方程进行求解

  2. 两平面法向量叉乘求切向量:

    n ⃗ = n ⃗ 1 × n ⃗ 2 = ( F x ′ , F y ′ , F z ′ ) ∣ P 0 × ( G x ′ , G y ′ , G z ′ ) ∣ P 0 \vec n=\vec n_1 \times \vec n_2=(F_x',F_y',F_z')|_{P_0} \times (G_x',G_y',G_z')|_{P_0} n =n 1×n 2=(Fx,Fy,Fz)P0×(Gx,Gy,Gz)P0

平面束方程求的是过一条直线的平面束方程,且该直线用一般式表达

假设函数 f ( x , y ) f(x,y) f(x,y) P 0 P_0 P0处,沿着 l ( 0 , 1 ) l(0,1) l(0,1)的方向的方向导数为2。注意这里 l ( 0 , 1 ) l(0,1) l(0,1)仅是指方向,而不是具体数值,即仅能认为 f x ′ ∣ P 0 = 0 , f y ′ ∣ P 0 > 0 f_x'|_{P_0}=0,f_y'|_{P_0}>0 fxP0=0,fyP0>0,而不可认为是 f y ′ ∣ P 0 = 1 f_y'|_{P_0}=1 fyP0=1,即有方程组:

{ f x ′ ∣ P 0 = 0 f y ′ ∣ P 0 > 0 ∂ u ∂ l ⃗ = f x ′ ⋅ 0 ⋅ i ⃗ + f y ′ ⋅ 1 ⋅ j ⃗ ⇒ ∣ ∂ u ∂ l ⃗ ∣ = 0 2 + ( f y ′ ) 2 = 2 \begin{cases} &f_x'|_{P_0}=0\\ &f_y'|_{P_0}>0\\ &\frac{\partial u}{\partial \vec l}=f_x' \cdot0 \cdot \vec i+f_y' \cdot1\cdot \vec j\\ \end{cases} \Rightarrow |\frac{\partial u}{\partial \vec l}|=\sqrt{0^2+(f_y')^2}=2 fxP0=0fyP0>0l u=fx0i +fy1j l u=02+(fy)2 =2

已知 A , B , C A,B,C A,B,C三点的坐标,要求过3点的平面方程可用点法式:

  1. n ⃗ = A B → × B C → \vec n=\overrightarrow{AB} \times \overrightarrow{BC} n =AB ×BC
  2. 过点 A A A

法向方向与切向方向实际上有 ± \pm ±两个方向,做题时(尤其是填空题),勿忘带上 ± \pm ±

a ⃗ , b ⃗ \vec a,\vec b a ,b 为邻边的平行四边形面积: S = ∣ a ⃗ × b ⃗ ∣ S=|\vec a \times \vec b| S=a ×b

直线一般式 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} &F(x,y,z)=0\\ &G(x,y,z)=0\\ \end{cases} {F(x,y,z)=0G(x,y,z)=0投影到坐标面 x o y xoy xoy的流程

  1. 联立方程组消去 z z z,得到仅含有 x , y x,y x,y得到函数 H ( x , y ) = 0 H(x,y)=0 H(x,y)=0
  2. 结果为

{ H ( x , y ) = 0 z = 0 \begin{cases} &H(x,y)=0\\ &z=0\\ \end{cases} {H(x,y)=0z=0

当二型面积分被积函数含有绝对值时,有时不可以直接用高斯公式(绝对值在0点的导数不存在),可以考虑分区域,再分别用高斯。

函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)初最大的方向导数即为该点的梯度值 ∣ grad f ∣ = ∣ ( f x ′ , f y ′ , f z ′ ) ∣ = ( f x ′ ) 2 + ( f y ′ ) 2 + ( f z ′ ) 2 |\text{grad}f|=|(f_x',f_y',f_z')|=\sqrt{(f_x')^2+(f_y')^2+(f_z')^2} gradf=(fx,fy,fz)=(fx)2+(fy)2+(fz)2 ,不过注意这里不要对梯度进行化简,如:

对于 f ( x , y , z ) = x 2 + y 2 + z 2 f(x,y,z)=x^2+y^2+z^2 f(x,y,z)=x2+y2+z2,有 grad f = ( 2 x , 2 y , 2 z ) \text{grad}f=(2x,2y,2z) gradf=(2x,2y,2z),其梯度方向确实为 ( x , y , z ) (x,y,z) (x,y,z),毕竟方向是有无数种表示方法。但是其梯度值/最大的方向导数值为 ( 2 x ) 2 + ( 2 y ) 2 + ( 2 z ) 2 \sqrt{(2x)^2+(2y)^2+(2z)^2} (2x)2+(2y)2+(2z)2 ,是不可以改变的。

如果 u n > 0 u_n>0 un>0勿忘 u n + 1 − u n = ( u n + 1 + u n ) ( u n + 1 − u n ) u_{n+1}-u_{n}=(\sqrt{u_{n+1}}+\sqrt{u_{n}})(\sqrt{u_{n+1}}-\sqrt{u_{n}}) un+1un=(un+1 +un )(un+1 un )

如果一条之间的任意两个点在一个平面上,那么这条直线就在这个平面上

两直线异面的向量积判别法:两条直线的方向向量和其上任意两点连线的向量的混合积若不等于0 则两直线异面

18 多元函数积分学

除了常用的对称性化简:一个内部对称的区域,若被积函数满足奇函数条件,积分结果为0,若被积函数满足偶含数条件,积分结果为半区域2倍。也可以考虑半区域对称性:两个彼此对称的区域,若被积函数满足奇函数条件,则在两个积分区域上的积分结果互为相反数,若被积函数满足偶含数条件,则在两个积分区域上的积分结果相同。

化简先行:

  1. 对称性:二重、三重、一型线面优先考虑对称性化简(注意定积分及二型线面没有对称性,但是二型线面可考虑代入,当然一型也可以;二型线面通过格林公式或者高斯公式也可转化为一型线面;三维二线也可以转化为一型或二型面积分)。奇函数消积分项,轮换对称性添消被积函数项
  2. 代入:对于一、二型线面积分,由于是沿着积分域曲线或曲面进行积分的,所以可以将积分域方程代入被积函数中,这样有时可化简被积函数,或者去除被积函数的奇点,将不可用格林公式或者高斯公式的题目化为可以用的

目前学到的用格林公式的图形均是曲线无交叉的,如果遇见有交叉的,八成是图像画错了。

有时曲线方程开方所获得的正负号,可以由参数方程的取值来表示

曲线化为参数时,参数的取值是由曲线的起止点而确定的,不一定是从小到大的

函数的抽象曲线路径的曲线积分,或者很难直接求的路径,可以考虑是否积分与路径无关

注意区分二重积分和部分形式的二型曲面积分,二者的主要区别在于被积曲面是否在三维空间

有时候转换投影法比补面高斯要简单,不要吊死在一种方法上

一型面积分的 d s > 0 ds>0 ds>0,二型面积分的 d x d y , d y d z , d x d z dxdy,dydz,dxdz dxdy,dydz,dxdz是有符号的,其符号由有向曲面法向量与坐标轴夹角余弦 ( cos ⁡ γ , cos ⁡ α , cos ⁡ β ) (\cos \gamma,\cos \alpha ,\cos \beta ) (cosγ,cosα,cosβ)而定,它们之间的关系为:

{ d x d y = d s cos ⁡ γ d x d z = d s cos ⁡ α d y d z = d s cos ⁡ β \begin{cases} &dxdy=ds\cos\gamma\\ &dxdz=ds\cos \alpha \\ &dydz=ds \cos \beta \\ \end{cases} dxdy=dscosγdxdz=dscosαdydz=dscosβ

高斯公式与格林公式由于有求导操作,所以也是有消项的作用的。

二重积分变换后用格林公式:

有时面对二重积分,需要对其被积函数数实行求导操作,可考虑用下面步骤,将二重积分转化为二型线积分,再用格林公式:

二 重 积 分 转 极 坐 标 方 程 → 逆 用 二 线 的 参 数 坐 标 转 化 { d x = r cos ⁡ θ d θ d y = r sin ⁡ θ d θ , 将 内 次 其 化 为 二 线 → 对 用 格 林 公 式 , 对 被 积 函 数 求 导 \begin{aligned} 二重积分转极坐标方程 &\rightarrow 逆用二线的参数坐标转化\begin{cases} &dx =r \cos \theta d\theta\\ &dy = r \sin \theta d \theta\\\end{cases},将内次其化为二线\\ &\rightarrow 对用格林公式,对被积函数求导 \end{aligned} 线{dx=rcosθdθdy=rsinθdθ,线

如,已知 f x x ′ ′ + f y y ′ ′ = 1 , S d = 1 f''_{xx}+f''_{yy}=1,S_d=1 fxx+fyy=1,Sd=1,求 I = ∬ D ( x f x ′ + y f y ′ ) d σ I=\iint\limits_D(xf_x'+yf_y')d\sigma I=D(xfx+yfy)dσ

I = ∫ 0 1 r d r ∫ 0 2 π f x ′ r cos ⁡ θ + f y ′ r sin ⁡ θ d θ = ∫ 0 1 [ ∮ L r − f y ′ d x + f x ′ d y ] r d r = ∫ 0 1 [ ∬ D ( f x x ′ ′ + f y y ′ ′ ) d σ ] r d r \begin{aligned} I&=\int_{0}^{1}rdr\int_{0}^{2\pi}f_x'r\cos \theta+f_y'r\sin \theta d \theta=\int_{0}^{1}[\oint_{Lr}-f_y'dx+f_x'dy]rdr\\&=\int_{0}^{1}[\iint\limits_D(f_{xx}''+f_{yy}'')d\sigma]rdr \end{aligned} I=01rdr02πfxrcosθ+fyrsinθdθ=01[Lrfydx+fxdy]rdr=01[D(fxx+fyy)dσ]rdr

注意曲面方向取正,指的是指向坐标轴正方向

三种转换公式:

  1. 格林公式:平面二线转为二重
  2. 斯托克斯:空间二线转为一面或二面
  3. 高斯:二面转为二重

有一类二线题目是要求挖洞去求解,如果原线积分方向是你几分,且 Q x ′ = P y ′ Q_x'=P_y' Qx=Py,那么直接可以补小曲线 L r − L_{r^-} Lr(顺时针),注意补完线之后的式子也别一激动用了隔离门,往往可以用代入法求解。

线积分的比较大小有时可用定义法求解(化为积分和式),注意化为积分和式后,微分元素化为:

Δ s = ( Δ x ) 2 + ( Δ y ) 2 d x = Δ x , d y = Δ y \begin{aligned}&\Delta s=\sqrt{(\Delta x)^2+(\Delta y)^2}\\ &dx=\Delta x,\quad dy=\Delta y\\ \end{aligned} Δs=(Δx)2+(Δy)2 dx=Δx,dy=Δy

注意:

grad f ( x , y , z ) ⋅ d S = f x ′ d x + f y ′ d y + f z ′ d z \text{grad}f(x,y,z)\cdot dS=f_x'dx+f_y'dy+f_z'dz gradf(x,y,z)dS=fxdx+fydy+fzdz

曲面 F ( x , y , z ) F(x,y,z) F(x,y,z)的外法向量为 n ⃗ = ( F x ′ , F y ′ , F z ′ ) \vec n=(F_x',F_y',F_z') n =(Fx,Fy,Fz),单位外法向量再归一即可

计算二线时,注意 y ′ = d y d x y'=\frac{dy}{dx} y=dxdy是可以直接代入的:

I = ∮ x y ′ d x − y y ′ d y = ∮ x d y − y d x = ∬ 2 d σ I=\oint xy'dx-\frac{y}{y'}dy=\oint xdy-ydx=\iint2d\sigma I=xydxyydy=xdyydx=2dσ

求二型曲面积分时不仅除了补面高斯,别忘了还可以直接投影。有时这种有多种思路的题不仅是简单与否的问题,甚至是算出来算不出来的问题(如存在一种含有未知函数 f ( x ) f(x) f(x)的二型曲面积分,如果补面高斯,消不掉未知函数,但是用直接投影反而可以消去)

注意对z轴的空间曲面的转动惯量是 ∬ Σ ( x 2 + y 2 ) ρ d S \iint\limits_\Sigma(x^2+y^2)\rho dS Σ(x2+y2)ρdS;而空间立方体的对z轴的转动惯量为 ∭ Ω ( x 2 + y 2 ) ρ d V \iiint\limits_\Omega(x^2+y^2)\rho dV Ω(x2+y2)ρdV

注意有一种问法,要求曲线 y ( x ) y(x) y(x) x ≥ 0 x \geq0 x0上的全长,注意 x x x的实际区间范围:

例:求曲线 4 y = ∫ 0 2 x 12 − x 2 u 2 d u ( x ≥ 0 ) 4y=\int_{0}^{2}x\sqrt{12-x^2u^2}du{\kern 5pt}(x\geq0) 4y=02x12x2u2 du(x0)的全长:

S = ∫ 1 + ( y x ′ ) 2 d S S=\int_{}^{}\sqrt{1+(y_x')^2}dS S=1+(yx)2 dS,求得 y = 3 − x 2 y=\sqrt{3-x^2} y=3x2 ,所以 0 ≤ x ≤ 3 0\leq x \leq \sqrt{3} 0x3

PS:不要代入 1 + ( y x ′ ) 2 = 4 − x 2 \sqrt{1+(y_x')^2}=\sqrt{4-x^2} 1+(yx)2 =4x2 后认为 0 ≤ x ≤ 4 0\leq x \leq 4 0x4,是错误的

关于一种常见的补小曲面用高斯公式题型的结论:

若原曲面方向为+,那么最终结果补的面就是+;若原曲面方向为-,那么最终结果补的面就是-;

注意若是多段曲面组成的闭曲面的正负号,全向外才是正,全向内才是负

  1. 原曲面 Σ 0 + \Sigma_0^+ Σ0+

    那么补充曲面应该为 Σ 1 − \Sigma_1^- Σ1,有:

    I = ∯ Σ 0 + = ∯ Σ 0 + + Σ 1 − + ∯ Σ 1 + = ∯ Σ 1 + I=\oiint_{\Sigma_0^+}=\oiint_{\Sigma_0^++\Sigma_1^-}+\oiint_{\Sigma_1^+}=\oiint_{\Sigma_1^+} I= Σ0+= Σ0++Σ1+ Σ1+= Σ1+

  2. 原曲面 Σ 0 − \Sigma_0^- Σ0,有:

    那么补充曲面应该为 Σ 1 + \Sigma_1^+ Σ1+,有:

    I = ∯ Σ 0 − = ∯ Σ 0 − + Σ 1 + − ∯ Σ 1 + = − ∯ Σ 1 + I=\oiint_{\Sigma_0^-}=\oiint_{\Sigma_0^-+\Sigma_1^+}-\oiint_{\Sigma_1^+}=-\oiint_{\Sigma_1^+} I= Σ0= Σ0+Σ1+ Σ1+= Σ1+

抽象二型线积分求解常用的两种方法

  1. 利用积分区域的轮换对称性,补项消项,令最终结果为0

  2. 利用全微分方程在闭曲线上的积分为0,令最终结果为0

    例: I = ∮ f ( x 2 + y 2 ) x d y + f ( x 2 + y 2 ) y d x , 其 中 f ( x ) 连 续 I=\oint f(x^2+y^2)xdy+f(x^2+y^2)ydx,其中f(x)连续 I=f(x2+y2)xdy+f(x2+y2)ydxf(x),求 I I I

    解:由于 f ( x ) f(x) f(x)连续,那么可以令函数 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_0^xf(t)dt F(x)=0xf(t)dt,那么有:

    I = ∮ f ( x 2 + y 2 ) [ x d x + y d x ] = ∮ f ( x 2 + y 2 ) d [ x 2 + y 2 2 ] = ∮ d [ F ( x 2 + y 2 ) 2 ] I=\oint f(x^2+y^2)[xdx+ydx]=\oint f(x^2+y^2)d[\frac{x^2+y^2}{2}]=\oint d[\frac{F(x^2+y^2)}{2}] I=f(x2+y2)[xdx+ydx]=f(x2+y2)d[2x2+y2]=d[2F(x2+y2)]

    d F ( x 2 + y 2 ) = 2 [ f ( x 2 + y 2 ) x d y + f ( x 2 + y 2 ) y d x ] dF(x^2+y^2)=2[f(x^2+y^2)xdy+f(x^2+y^2)ydx] dF(x2+y2)=2[f(x2+y2)xdy+f(x2+y2)ydx]

    被积函数为全微分方程,结果直接为0

    注意求与空间曲面相关的形心坐标时,注意要求的是曲面的形心坐标,还是曲面围成的立方体的形心坐标,二者的方法完全不同

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
关于高数保研的复习资料,我引用中提到的高等数学复习资料,但是请注意该资料是用于保研考试准备的,不适合用于课程考试复习。这些资料未经允许不可以转载或用作商业用途。另外,根据[2]提到的保研考试科目,高数是其中的一部分,包括数学分析、高等代数与解析几何、常微分方程、实变函数、数值分析等内容。所以在准备保研考试时,可以参考这些科目的复习资料。而最后也提到了准备保研考试需要注意英语六级的过关和平时成绩的重要性。另外,好好学习是必要的,同时把握机会并尽力尝试也是很重要的。希望以上信息对你有所帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [保研高数复习.pdf](https://download.csdn.net/download/qq_38633884/11832855)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【毕业生经验贴】保研|2013级数学与应用数学——王璐](https://blog.csdn.net/weixin_39690958/article/details/119310749)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值