zero-shot learning(ZSL)语义对齐方法总结

ZSL语义对齐方法探索:从经典到现代
本文总结了zero-shot learning (ZSL)中的语义对齐方法,包括经典的线性对齐、贝叶斯概率模型到现代的GAN、VAE和GCN方法。探讨了视觉空间和语义空间的工程技巧,如交并补方法和图卷积网络,以及在实际应用中遇到的挑战,如特征对齐困难和属性关联问题。常用数据集包括COCO、ImageNet、AWA2等。提供相关论文和代码资源链接。

zero-shot learning(ZSL)语义对齐方法总结

语义对齐方法总结
最近在研究ZSL问题,姑且读了几篇文章,想做一个简单的总结。
主要将ZSL问题分为:

  • 经典的方法(17年之前,简常规数学方法,机器学习方法),诸如线性对齐、非线性对齐、贝叶斯概率模型、中间空间映射(通过直方图将视觉特征映射和语义空间做对齐);
  • 现代方法:GAN、VAE方法,常用encoder-decoder模型,加强对齐效果。GAN中还常用attention机制,以及增强GAN做图像和文本数据集增强。其次,分为视觉空间工程和语义空间工程。视觉空间工程中例如用交并补的方法,将没有笼子的老虎和有笼子的老虎,用补集把笼子提取出来,用于有笼子的鸟识别。语义空间工程:一方面对语义空间进行增强划分,譬如下图:词划分
    将whale,killer_whale、dolphin、sea_lion水下动物划分为一类,增强对齐效果。另外,近两年GCN(Graph Convolutional Network)盛行,也有非凡效果。
    就目前paper,我视觉空间对齐到语义空间效果提升不明显,有的特征很难对过去。之前的方法都存在属性或类别没有关联的问题。比如一个鸟有头、羽毛、尾巴、颜色等特征,一般采用直接的浅表示方法,并没有用到之间的图特征。鸟和马有共通的头,但这两怎么能区分、怎么又算是有共性,值得思考。
    目前常用数据集:COCO,ImageNet、AWA2(AWA1不开源授权)、CUB等。

Github资源:

  • paper:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值