目录
文章侧重点
想要解决的问题:
DEFR收敛速度太慢,如此高的训练成本【DERT在COCO训练集上要训练500个epoch才能收敛,相比之下Faster R-CNN只要12~36个epoch就可以收敛】是因为在匹配query与特征映射空间中的开销,也就是对应的交叉注意力(cross-attention)的计算过程。这个过程是将一个随机赋值的Object query训练成一个可以从特征中通过加权突出待检测目标的query,这个过程需要不断训练。
该过程如下图所示:

交叉注意机制的计算公式如下:

从实现效果的角度来看,交叉注意力的计算也可以解释为“匹配和特征蒸馏"的过程。 如公式所示,交叉注意力的实现包含了两部分含义:
- 将Object query与Encoded Feature有关的区域进行匹配。相当于Object query与Encoded Feature进行全局计算相似度,找到感兴趣区域,因为是对Encoded特征的全局计算,所以这个操作非常耗时。 这一步计算完成之后,会得到上中的Attention Weight Map。可以看到图中某些区域得到了增强。
- 从匹配到的区域中再度提取特征。相当于对某些已经得到注意的区域进行再次强调,故得到Distilled Features。
基于上述观察,本文提出了对这个匹配过程进行优化!
Sematic-Aligned-Matching DERT
本文提出的语义对齐匹配方法,简称为SAM-DERT。旨在保持DERT的精度的同时,加速DERT。 所以首先文章开篇分析了当前DERT中的交叉注意力机制中存在的问题,并以此为突破口,设计了一个即插即用的头——SAM-DERT,嵌入交叉注意力模块中,为Object query与Encoded Feature有关的区域匹配之前,加入一个强有力的关于目标的先验信息,从而加速”匹配"过程。
网络结构
SAM-DERT

由上图可知,本文提出的这个即插即用的模块在DERT中的应用咋如图位置,在交叉注意力模块之前。
Semantics Aligner

整个语义对齐模块的实现如上图。一共可以分为三个部分:语义对齐的匹配、显著点特征的匹配、信息损失的补偿。
语义对齐的匹配
所谓“语义对齐”,就是将Object query和Encoded Feature映射到同一个Embedding空间。 原始DERT中在Object query的初始化阶段是将它随机映射到一个特征空间,所以在交叉注意力机制中就需要对Encoded Feature所有空间位置进行匹配。故现在的思路就是,一开始就给一些先验知识给Object query,使得Object query和Encoded Feature在相同的嵌入空间,以提升效率。
实现:

- 根据上图中的公式2,首先引入一个reference box向量 R b o x R_{box} Rbox,用于对Encoded Feature F F F作RoIAlign,生成区域级(region-level)的特征 F R F_R

最低0.47元/天 解锁文章
1946

被折叠的 条评论
为什么被折叠?



