Pandas数据分析——超好用的Groupby与map、apply、applymap详解

Groupby详解

       在日常的数据分析中,经常需要将数据根据某个(多个)字段划分为不同的群体(group)进行分析,如电商领域将全国的总销售额根据省份进行划分,分析各省销售额的变化情况,社交领域将用户根据画像(性别、年龄)进行细分,研究用户的使用情况和偏好等。在Pandas中,上述的数据处理操作主要运用groupby完成,这篇文章就介绍一下groupby的基本原理及对应的aggtransformapply操作。

为了后续图解的方便,采用模拟生成的10个样本数据,代码和数据如下:

company=["A","B","C"]
 
data=pd.DataFrame({
    "company":[company[x] for x in np.random.randint(0,len(company),10)],
    "salary":np.random.randint(5,50,10),
    "age":np.random.randint(15,50,10)})

groupby的基本原理

在Pandas中,实现分组操作的代码很简单,仅需一行代码,在这里,将上面的数据集按照company字段进行划分:

In [5]: group = data.groupby("company")

将上述代码输入ipython后,会得到一个DataFrameGroupBy对象

In [6]: group
Out[6]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002B7E2650240>

那这个生成的DataFrameGroupBy是啥呢?对data进行了groupby后发生了什么?ipython所返回的结果是其内存地址,并不利于直观地理解,为了看看group内部究竟是什么,这里把group转换成list的形式来看一看:

In [8]: list(group)
Out[8]:
[('A',   company  salary  age
  3       A      20   22
  6       A      23   33), 
 ('B',   company  salary  age
  4       B      10   17
  5       B      21   40
  8       B       8   30), 
 ('C',   company  salary  age
  0       C      43   35
  1       C      17   25
  2       C       8   30
  7       C      49   19)]

 

转换成列表的形式后,可以看到,列表由三个元组组成,每个元组中,第一个元素是组别(这里是按照company进行分组,所以最后分为了A,B,C),第二个元素的是对应组别下的DataFrame,整个过程可以图解如下:

总结来说,groupby的过程就是将原有的DataFrame按照groupby的字段(这里是company),划分为若干个分组DataFrame,被分为多少个组就有多少个分组DataFrame所以说,在groupby之后的一系列操作(如aggapply等),均是基于分组DataFrame的操作。理解了这点,也就基本摸清了Pandas中groupby操作的主要原理。下面来讲讲groupby之后的常见操作。

agg分组聚合

聚合操作是groupby后常见的操作,会写SQL的朋友对此应该是非常熟悉了。聚合操作可以用来求和、均值、最大值、最小值等,下面的表格列出了Pandas中常见的聚合操作。

针对样例数据集,如果我想计算不同公司员工的平均年龄和平均薪水,可以按照下方的代码进行:

In [12]: data.groupby("company").agg('mean')
Out[12]:
         salary    age
company
A         21.50  27.50
B         13.00  29.00
C         29.25  27.25

如果想对针对不同的列求不同的值,比如要计算不同公司员工的平均年龄以及薪水的中位数,可以利用字典指定进行聚合操作:

In [17]: data.groupby('company').agg({'salary':'median','age':'mean'})
Out[17]:
         salary    age
company
A          21.5  27.50
B          10.0  29.00
C          30.0  27.25

 

agg聚合过程可以图解如下(第二个例子为例):

transform

transform是一种什么数据操作?和agg有什么区别呢?为了更好地理解transformagg的不同,下面从实际的应用场景出发进行对比。

在上面的agg中,我们学会了如何求不同公司员工的平均薪水,如果现在需要在原数据集中新增一列avg_salary,代表员工所在的公司的平均薪水(相同公司的员工具有一样的平均薪水),该怎么实现呢?如果按照正常的步骤来计算,需要先求得不同公司的平均薪水,然后按照员工和公司的对应关系填充到对应的位置,不用transform的话,实现代码如下:

In [21]: avg_salary_dict = data.groupby('company')['salary'].mean().to_dict()
 
In [22]: data['avg_salary'] = data['company'].map(avg_salary_dict)
 
In [23]: data
Out[23]:
  company  salary  age  avg_salary
0       C      43   35       29.25
1       C      17   25       29.25
2       C       8   30       29.25
3       A      20   22       21.50
4       B      10   17       13.00
5       B      21   40       13.00
6       A      23   33       21.50
7       C      49   19       29.25
8       B       8   30       13.00

如果使用transform的话,仅需要一行代码:

In [24]: data['avg_salary'] = data.groupby('company')['salary'].transform('mean')
 
In [25]: data
Out[25]:
  company  salary  age  avg_salary
0       C      43   35       29.25
1       C      17   25       29.25
2       C       8   30       29.25
3       A      20   22       21.50
4       B      10   17       13.00
5       B      21   40       13.00
6       A      23   33       21.50
7       C      49   19       29.25
8       B       8   30       13.00

 

还是以图解的方式来看看进行groupbytransform的实现过程(为了更直观展示,图中加入了company列,实际按照上面的代码只有salary列):

图中的大方框是transformagg所不一样的地方,对agg而言,会计算得到ABC公司对应的均值并直接返回,但对transform而言,则会对每一条数据求得相应的结果,同一组内的样本会有相同的值,组内求完均值后会按照原索引的顺序返回结果,如果有不理解的可以拿这张图和agg那张对比一下。

apply

apply应该是大家的老朋友了,它相比aggtransform而言更加灵活,能够传入任意自定义的函数,实现复杂的数据操作。在Pandas数据处理三板斧,你会几板?中,介绍了apply的使用,那在groupby后使用apply和之前所介绍的有什么区别呢?

区别是有的,但是整个实现原理是基本一致的。两者的区别在于,对于groupby后的apply,以分组后的分组DataFrame作为参数传入指定函数的,基本操作单位是DataFrame,而之前介绍的apply的基本操作单位是Series。还是以一个案例来介绍groupby后的apply用法。

假设我现在需要获取各个公司年龄最大的员工的数据,该怎么实现呢?可以用以下代码实现:

In [38]: def get_oldest_staff(x):
    ...:     df = x.sort_values(by = 'age',ascending=True)
    ...:     return df.iloc[-1,:]
    ...:
 
In [39]: oldest_staff = data.groupby('company',as_index=False).apply(get_oldest_staff)
 
In [40]: oldest_staff
Out[40]:
  company  salary  age  
0       A      23   33       
1       B      21   40       
2       C      43   35      

可以看到,此处的apply和上篇文章中所介绍的作用原理基本一致,只是传入函数的参数由Series变为了此处的分组DataFrame

最后,关于apply的使用,这里有个小建议,虽然说apply拥有更大的灵活性,但apply的运行效率会比aggtransform更慢。所以,groupby之后能用aggtransform解决的问题还是优先使用这两个方法,实在解决不了了才考虑使用apply进行操作。

map、apply、applymap详解

       在日常的数据处理中,经常会对一个DataFrame进行逐行、逐列和逐元素的操作,对应这些操作,Pandas中的mapapplyapplymap可以解决绝大部分这样的数据处理需求。这篇文章就以案例附带图解的方式,为大家详细介绍一下这三个方法的实现原理,相信读完本文后,不论是小白还是Pandas的进阶学习者,都会对这三个方法有更深入的理解。

本文演示的数据集是模拟生成的,想练手的可以按下方的代码生成。

boolean=[True,False]
gender=["男","女"]
color=["white","black","yellow"]
data=pd.DataFrame({
    "height":np.random.randint(150,190,100),
    "weight":np.random.randint(40,90,100),
    "smoker":[boolean[x] for x in np.random.randint(0,2,100)],
    "gender":[gender[x] for x in np.random.randint(0,2,100)],
    "age":np.random.randint(15,90,100),
    "color":[color[x] for x in np.random.randint(0,len(color),100) ]})

数据集如下所示,各列分别代表身高、体重、是否吸烟、性别、年龄和肤色。

Series数据处理

1. map用法

如果需要把数据集中gender列的男替换为1,女替换为0,怎么做呢?绝对不是用for循环实现,使用Series.map()可以很容易做到,最少仅需一行代码。

#①使用字典进行映射
data["gender"] = data["gender"].map({"男":1, "女":0})
​
#②使用函数
def gender_map(x):
    gender = 1 if x == "男" else 0
    return gender
#注意这里传入的是函数名,不带括号
data["gender"] = data["gender"].map(gender_map)

map在实际过程中是怎么运行的呢?请看下面的图解(为了方便展示,仅截取了前10条数据)

不论是利用字典还是函数进行映射,map方法都是把对应的数据逐个当作参数传入到字典或函数中,得到映射后的值。

2. apply

同时Series对象还有apply方法,apply方法的作用原理和map方法类似,区别在于apply能够传入功能更为复杂的函数。怎么理解呢?一起看看下面的例子。

假设在数据统计的过程中,年龄age列有较大误差,需要对其进行调整(加上或减去一个值),由于这个加上或减去的值未知,故在定义函数时,需要加多一个参数bias,此时用map方法是操作不了的(传入map的函数只能接收一个参数),apply方法则可以解决这个问题。

def apply_age(x,bias):
    return x+bias
​
#以元组的方式传入额外的参数
data["age"] = data["age"].apply(apply_age,args=(-3,))

可以看到age列都减了3,当然,这里只是简单举了个例子,当需要进行复杂处理时,更能体现apply的作用。

总而言之,对于Series而言,map可以解决绝大多数的数据处理需求,但如果需要使用较为复杂的函数,则需要用到apply方法。

DataFrame数据处理

1. apply

DataFrame而言,apply是非常重要的数据处理方法,它可以接收各种各样的函数(Python内置的或自定义的),处理方式很灵活,下面通过几个例子来看看apply的具体使用及其原理。

在进行具体介绍之前,首先需要介绍一下DataFrameaxis的概念,在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。axis=0代表操作对列columns进行,axis=1代表操作对行row进行,如下图所示。

如果还不是很了解,没关系,下面会分别对apply沿着0轴以及1轴的操作进行讲解,继续往下走。

假设现在需要对data中的数值列分别进行取对数求和的操作,这时可以用apply进行相应的操作,因为是对列进行操作,所以需要指定axis=0,使用下面的两行代码可以很轻松地解决我们的问题。

# 沿着0轴求和
data[["height","weight","age"]].apply(np.sum, axis=0)
​
# 沿着0轴取对数
data[["height","weight","age"]].apply(np.log, axis=0)

 

实现的方式很简单,但调用apply时究竟发生了什么呢?过程是怎么实现的?还是通过图解的方式来一探究竟。(取前五条数据为例)

当沿着轴0(axis=0)进行操作时,会将各列(columns)默认以Series的形式作为参数,传入到你指定的操作函数中,操作后合并并返回相应的结果。

那如果在实际使用中需要按行进行操作(axis=1),那整个过程又是怎么实现的呢?

在数据集中,有身高和体重的数据,所以根据这个,我们可以计算每个人的BMI指数(体检时常用的指标,衡量人体肥胖程度和是否健康的重要标准),计算公式是:体重指数BMI=体重/身高的平方(国际单位kg/㎡),因为需要对每个样本进行操作,这里使用axis=1apply进行操作,代码如下:

def BMI(series):
    weight = series["weight"]
    height = series["height"]/100
    BMI = weight/height**2
    return BMI
​
data["BMI"] = data.apply(BMI,axis=1)

还是用图解的方式来看看这个过程到底是怎么实现的(以前5条数据为例)。

apply设置了axis=1对行进行操作时,会默认将每一行数据以Series的形式(Series的索引为列名)传入指定函数,返回相应的结果。

总结一下对DataFrameapply操作:

  1. axis=0时,对每列columns执行指定函数;当axis=1时,对每行row执行指定函数。
  2. 无论axis=0还是axis=1,其传入指定函数的默认形式均为Series,可以通过设置raw=True传入numpy数组
  3. 对每个Series执行结果后,会将结果整合在一起返回(若想有返回值,定义函数时需要return相应的值)
  4. 当然,DataFrameapplySeriesapply一样,也能接收更复杂的函数,如传入参数等,实现原理是一样的,具体用法详见官方文档。

2. applymap

applymap的用法比较简单,会对DataFrame中的每个单元格执行指定函数的操作,虽然用途不如apply广泛,但在某些场合下还是比较有用的,如下面这个例子。

为了演示的方便,新生成一个DataFrame

df = pd.DataFrame(
    {
        "A":np.random.randn(5),
        "B":np.random.randn(5),
        "C":np.random.randn(5),
        "D":np.random.randn(5),
        "E":np.random.randn(5),
    }
)
df

现在想将DataFrame中所有的值保留两位小数显示,使用applymap可以很快达到你想要的目的,代码和图解如下:

df.applymap(lambda x:"%.2f" % x)

转载出处:

https://www.jianshu.com/p/b50941b6d229

https://zhuanlan.zhihu.com/p/100064394?utm_source=wechat_sessio

  • 9
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值