40 | 线性回归(中):如何使用最小二乘法进行直线拟合?

文章讲述了线性回归中的误差概念,强调了最小二乘法在处理误差和非完美线性关系中的作用。通过矩阵形式解释了最小二乘法的原理,并预告了后续通过实例和代码演示的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一节,提到了,求解线性回归和普通的线性方程组最大的不同在于误差ε。在求解线性方程组的时候,我们并不考虑误差的存在,因此存在无解的可能。而线性回归允许误差ε的存在,我们要做的就是尽量把ε最小化,并控制在一定范围之内。这样我们就可以求方程的近似解。而这种近似解对于海量的大数据分析来说是非常重要的。

但是现实中的数据一定存在由于各种各样原因所导致的误差,因此即使自变量和因变量之间存在线性关系,也基本上不可能完美符合这种线性关系。总的来说,线性回归分析并不一定需要 100% 精确,而误差ε的存在可以帮助我们降低对精度的要求。通常,多元线性回归会写作:

这里的 x1​,x2​,…,xn​ 是自变量,y 是因变量,b0​ 是截距,b1​,b2​,…,bn​ 是自变量的系数,ε 是随机误差。

在线性回归中,为了实现最小化 ε 的目标,我们可以使用最小二乘法进行直线的拟合。最小二乘法通过最小化误差的平方和,来寻找和观测数据匹配的最佳函数。由于这些内容有些抽象,下面我会结合一些例子来解释最小二乘法的核心思想,以及如何使用这种方法进行求解。

使用观测值拟合

在详细阐述最小二乘法之前,我们先来回顾一下第 32 讲介绍的模型拟合。在监督式学习中,拟合模型其实是指通过模型的假设和训练样本,推导出具体参数的过程。有了这些参数,我们就能对新的数据进行预测。而在线性回归中,我们需要找到观测数据之间的线性关系。

假设我们有两个观测数据,对应于二维空间中的两个点,这两个点可以确定唯一的一条直线,两者呈现线性关系。可以参考下面这张图。

之后,我们又加入了一个点。这个点不在原来的那条直线上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值