1、梯度下降实现
我们了解到为了最小化误差函数,我们需要获得一些导数。我们开始计算误差函数的导数吧。首先要注意的是 s 型函数具有很完美的导数。即
σ′(x)=σ(x)(1−σ(x))
原因是,我们可以使用商式计算它:
现在,如果有 m个样本点,标为 x^(1), x^(2), ......, x^(m),, 误差公式是:

预测是 ![]()
我们的目标是计算 E,E, 在单个样本点 x 时的梯度(偏导数),其中 x 包含 n 个特征,即x = ![]()

为此,首先我们要计算 ![]()

类似的计算将得出:


总之
![]()
如果思考下,会发现很神奇。梯度实际上是标量乘以点的坐标!什么是标量?也就是标签和预测直接的差别。这意味着,如果标签与预测接近(表示点分类正确),该梯度将很小,如果标签与预测差别很大(表示点分类错误),那么此梯度将很大。请记下:小的梯度表示我们将稍微修改下坐标,大的梯度表示我们将大幅度修改坐标。
如果觉得这听起来像感知器算法,其实并非偶然性!稍后我们将详细了解。
感知器算法:
感知器算法:《李航:统计学习方法》--- 感知机算法原理与实现 https://blog.csdn.net/u013358387/a

本文详细介绍了梯度下降在深度学习中的应用,包括误差函数的导数计算、反向传播过程和sigmoid函数的导数。通过多层级、多类别分类的场景,解释了神经网络如何利用梯度下降进行权重更新,以及在实际问题中如何训练和应用神经网络,如分析学生录取数据。
最低0.47元/天 解锁文章
465

被折叠的 条评论
为什么被折叠?



