【图学习】GNN GCN图学习技术概述

此篇博客是对中科院计算所沈华伟博士的图学习报告笔记。B站上有上传的视频:https://www.bilibili.com/video/av667610549/一、图学习基础1.1拉普拉斯矩阵是图的度矩阵,是图的邻接矩阵。普通形式的拉普拉斯矩阵:矩阵元素为:对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian)(最常用):矩阵元素为:随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian):矩阵元素为:无向图的.
摘要由CSDN通过智能技术生成

此篇博客是对中科院计算所沈华伟博士的图学习报告笔记。B站上有上传的视频:https://www.bilibili.com/video/av667610549/

参考:https://blog.csdn.net/Frank_LJiang/article/details/94888011?utm_medium=distribute.pc_relevant.none-task-blog-OPENSEARCH-3.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-OPENSEARCH-3.control

目录

一、图学习基础

1.1拉普拉斯矩阵

1.2拉普拉斯算子

1.3 卷积

二、谱方法

2.1 spectral CNN

2.2 ChebyNet

2.3 沈华伟团队Graph Wavelet Neural Network

三、空间方法

3.1 By analogy

3.2 GraphSAGE 

3.3 GCN: Graph Convolution Network

3.4 GAT: Graph Attention Network

3.5 MoNet: A general framework for spatial methods

四、其他内容

4.1谱方法和空间方法区别与联系

4.2 图信号处理(滤波)

4.3 图池化Graph Pooling

五、开放讨论

5.1 图的结构特性真的发挥了实质性的作用了吗:

5.2 CNN究竟是做的什么工作。是一个上下文表示学习?

5.3 未来的应用


一、图学习基础

1.1 拉普拉斯矩阵

D=diag(d)是图的度矩阵,A是图的邻接矩阵。图的拉普拉斯矩阵矩阵表示了图的导数,刻画了信号在图上的平滑程度。
普通形式的拉普拉斯矩阵:
L=D-A
矩阵元素为:
{​{L}_{i,j}}=\left\{ \begin{matrix} diag({​{v}_{i}}) & i=j \\ -1 & i\ne j\text{ and }{​{v}_{i}}\text{ }is\text{ adjecent to }{​{v}_{j}}\text{ } \\ 0 & else \\ \end{matrix} \right.
对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian
)(最常用):
{​{L}^{sys}}={​{D}^{-1/2}}L{​{D}^{-1/2}}=I-{​{D}^{-1/2}}A{​{D}^{-1/2}}
矩阵元素为:
{​{L}_{i,j}}=\left\{ \begin{matrix} 1 & i=j\text{ and }diag({​{v}_{i}})\ne 0 \\ -\frac{1}{\sqrt{diag({​{v}_{i}})diag({​{v}_{j}})}} & i\ne j\text{ and }{​{v}_{i}}\text{ }is\text{ adjecent to }{​{v}_{j}}\text{ } \\ 0 & else \\ \end{matrix} \right.
随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian):
L_{i,j}^{rw}={​{D}^{-1}}L=I-{​{D}^{-1}}A
矩阵元素为:

{​{L}_{i,j}}=\left\{ \begin{matrix} 1 & i=j\text{ and }diag({​{v}_{i}})\ne 0 \\ -\frac{1}{diag({​{v}_{i}})} & i\ne j\text{ and }{​{v}_{i}}\text{ }is\text{ adjecent to }{​{v}_{j}}\text{ } \\ 0 & else \\ \end{matrix} \right.

无向图的拉普拉斯矩阵性质
(1)拉普拉斯矩阵是半正定矩阵。(最小特征值大于等于
0
(2)特征值中0出现的次数就是图连通区域的个数。
(3)最小特征值是0,因为拉普拉斯矩阵(普通形式: )每一行的和均为0,并且最小特征值对应的特征向量是每个值全为1 向量;;
(4
)最小非零特征值是图的代数连通度。

拉普拉斯矩阵特征分解:L=U\Lambda {​{U}^{-1}}=U\Lambda {​{U}^{T}}
U是列向量为拉普拉斯矩阵单位特征向量的矩阵。

1.2 拉普拉斯算子

拉普拉斯算子(Laplacian operator) 的物理意义是空间二阶导,准确定义是:标量梯度场中的散度,一般可用于描述物理量的流入流出。 比如说在二维空间中的温度传播规律,一般可以用拉普拉斯算子来描述。拉普拉斯矩阵也叫做离散的拉普拉斯算子。拉普拉斯算子是n维欧几里德空间中的一个二阶微分算子,定义为梯度f的散度f 。因此如果f是二阶可微的实函数,则f的拉普拉斯算子定义为:\nabla f={​{\nabla }_{2}}f=\nabla \cdot \nabla ff的拉普拉斯算子也是笛卡尔坐标系{x}_{i}所有非混合二阶偏导数:
\Delta f=\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}
函数
f的拉普拉斯算子也是该函数的海塞矩阵(是一个多元函数的二阶偏导数构成的方阵)的迹:∆f = tr(H(f))Delta f=tr(H(f))

1.3 卷积

CNN等神经网络的成功原因之一就是能够学习到一些局部化的网络结构,在通过堆叠变成结构化的模式。这也得益于卷积的平移不变性。所以,图卷积神经网络就是把欧式空间拓展到非欧空间。在图上定义卷积,由于复杂网络的节点度的分布是重尾分布,节点的分布结构有很大的不同。所以早期的图神经网络的研究主要集中在如何定义图上的卷积和图上的池化操作上。卷积就是图上的信号处理。一维连续函数卷积运算:

  • 4
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值