问题描述
卷积神经网络(CNN)的输入图片是具有欧几里得结构的图结构,具有规则的空间结构,比如图片是规则的正方形栅格,比如语音是规则的一维序列。而这些数据结构能够用一维、二维的矩阵表示,卷积神经网络处理起来很高效。
而广义上的图(graph)是非欧几里得结构,不规则的空间结构。图卷积神经网络就是以某种方式将卷积算子推广到任意图数据上。融合节点特征和图的拓扑结构,利用深度学习生成新的表示的方法。
图卷积神经网络具有卷积神经网络的以下性质
- 局部参数共享:算子适用于每个节点,处处共享
- 感受域正比于层数:最开始,每个节点包含直接邻居的信息,然后把邻居的邻居的信息包含近来。层数越多,感受域越广。
GCN
模型
H ( l + 1 ) = σ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 H ( l ) W ( l ) ) H^{(l+1)}=\sigma(\tilde D^{-1/2} \tilde A \tilde D^{-1/2} H^{(l)}W^{(l)}) H(l+1)=σ(D~−1/2A~D~−1/2H(l)W(l))
A ~ = A + I N \tilde A = A + I_N A~=A+IN 是邻接矩阵加上自环, I N I_N IN 是单位矩阵,
ChebNet
谱图卷积
图的谱卷积(spectral convoluton)定义为信号 x ∈ R N × N x\in \mathbb R^{N \times N} x∈RN×N 与滤波器 $g_\theta ={\rm diag}(\theta) $ 相乘,其中 θ ∈ R N × N \theta \in \mathbb R^{N \times N} θ∈RN×N 为傅里叶系数向量。
g ⋆ x = U g θ U T