【网络表示学习】GCN

本文介绍了图卷积神经网络(GCN)的基本概念,包括GCN模型的数学表达式,以及如何通过ChebNet使用切比雪夫多项式进行图谱卷积来降低计算复杂度。此外,还提到了FastGCN作为解决大型图数据计算复杂度的一种方法。GCN、ChebNet和FastGCN是图神经网络的重要组成部分,它们在处理非欧几里得结构数据时展现出了强大的能力。
摘要由CSDN通过智能技术生成

问题描述

卷积神经网络(CNN)的输入图片是具有欧几里得结构的图结构,具有规则的空间结构,比如图片是规则的正方形栅格,比如语音是规则的一维序列。而这些数据结构能够用一维、二维的矩阵表示,卷积神经网络处理起来很高效。

而广义上的图(graph)是非欧几里得结构,不规则的空间结构。图卷积神经网络就是以某种方式将卷积算子推广到任意图数据上。融合节点特征和图的拓扑结构,利用深度学习生成新的表示的方法。

图卷积神经网络具有卷积神经网络的以下性质

  • 局部参数共享:算子适用于每个节点,处处共享
  • 感受域正比于层数:最开始,每个节点包含直接邻居的信息,然后把邻居的邻居的信息包含近来。层数越多,感受域越广。

GCN

在这里插入图片描述

模型
H ( l + 1 ) = σ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 H ( l ) W ( l ) ) H^{(l+1)}=\sigma(\tilde D^{-1/2} \tilde A \tilde D^{-1/2} H^{(l)}W^{(l)}) H(l+1)=σ(D~1/2A~D~1/2H(l)W(l))
A ~ = A + I N \tilde A = A + I_N A~=A+IN 是邻接矩阵加上自环, I N I_N IN 是单位矩阵,

ChebNet

谱图卷积

图的谱卷积(spectral convoluton)定义为信号 x ∈ R N × N x\in \mathbb R^{N \times N} xRN×N 与滤波器 $g_\theta ={\rm diag}(\theta) $ 相乘,其中 θ ∈ R N × N \theta \in \mathbb R^{N \times N} θRN×N 为傅里叶系数向量。
g ⋆ x = U g θ U T

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值