反证法原理

今天学习了一下离散数学, 突然理解了反证法为什么可以用来证明p=>q这个命题了

首先我们先来看看在逻辑中一个命题是在什么情况下为真(true)或者假(false), 就拿我们最收悉的与或非其中的或(or)逻辑举个例子:

p 或(or) q, 比如说: 你说的是对的他说的是对的, 那么这里我们知道:

  • p=你说的是对的
  • q=他说的是对的

这里我们按正常人的逻辑思维来想想, 这句话要成立是不是只需要你或者他有一个人说的是对的?
也就是说"p or q"=true这个等式成立只需要处于"p=true, q=true/false"或者"p=true/false, q=true"的情况就行, 那我们使用表格表示如下:

pqp or q
truetruetrue
truefalsetrue
falsetruetrue
falsefalsefalse

同样的, 我们按照这样的思路, 来理解一下p=>q

p => q, 比如说: 只要猪会飞 那么 他说的就是对的,这里我们还是可以知道:

  • p=猪会飞
  • q=他说的是对的

这里我们也是分别考虑一下上面那个表中的四种情况, 如果猪不会飞, 也就不用管他说的对不对了, 这句话肯定逻辑是对的, 有点像我们平时说的"男人靠得住, 母猪会上树", 这里也就是暗含了"男人靠不住"这个前置的确定的条件, 导致我们不用管母猪会不会上树, 这句话的逻辑都是对的, 而考虑回我们的例子, 如果猪确实会飞, 而他说的不对, 自然而然我们这整句话都错了, 而如果猪会飞且他说的对, 这句话当然也没毛病, 所以我们同样可以得到列表如下:

pqp => q
truetruetrue
truefalsefalse
falsetruetrue
falsefalsetrue

这下我们就可以把p=>q这个命题进行抽象了, 我们只需要知道, 当p是false的时候, 不用看q, 这句话一定是对的, 而如果p是true的话, 只有在q是false的时候整句话才是错的, 那么我们现在正式看看, 为什么可以使用反证法和来证明命题p=>q

比如说我们现在有一个题目: 已知p, 证明q成立
对于这样的证明题, 我们可以记作:已知p=true, 证明 “p=>q” = true, 因为从上面的表格我们可以知道, 在p=true的情况下, 这个命题成立的唯一条件就是q=true
这里我们同时对等式两边取反得: “p ∧ \wedge ~q” = false, (因为~(p=>q) = ~(~p ∨ \vee q) = p ∧ \wedge ~q)
我们列出p ∧ \wedge ~q的逻辑表如下

q~qpp ∧ \wedge ~q
truefalsetruefalse
truefalsefalsefalse
falsetruetruetrue
falsetruefalsefalse

这里我们相当于把原来的命题转变成了一个新的命题:已知p = true, 证明"p ∧ \wedge ~q" = false
, 对于原来可能无法直接证明出的命题, 我们把它转化成这个命题

既然只有四种情况, 我们不妨逐一排除, 首先, 我们有p = true成立, 那么就能先排除掉两种情况, 接着我们发现分别在~q=true和~q=false的不同情况中正好对应了"p ∧ \wedge ~q" = true和"p ∧ \wedge ~q" = false两种情况, 所以我们只要假设~q=true这个情况存在然后证明它和已知的情况发生矛盾, 也就是这个情况不可能发生, 那就只能是~q=false, 也就可以证明原命题了

综上也就可以提出个反证法的大致流程了:

已知p=true, 求证q=true
证: 不妨假设~q=true. 那么…, 这个结论和已知条件矛盾, 那么肯定有~q=false, 所以有"p ∧ \wedge ~q" = false, 所以有"p=>q" = true, 所以有在p=true的情况下q=true.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值