目录:
1.计算机进行数字信号处理的特点
2.离散复指数函数的特点
3.离散傅里叶级数(DFS)
4.离散傅里叶变换(DFT)
关于计算机处理数字信号的特点
1)计算机只能处理有限长度的信号
2)计算机只能处理离散的时域和频域信号
3)计算机进行频域分析时,把需要处理的时域信号当作一个周期内的信号
离散指数函数基的特点
1. e j w 0 n e^{jw_0n} ejw0n的角频域变换 2 π 2\pi 2π后将等于原信号
证:
e
j
(
w
0
+
2
π
)
n
=
e
j
w
0
n
e
j
2
π
=
e
j
w
0
n
e^{j(w_0+2\pi)n}=e^{jw_0n}e^{j2\pi}=e^{jw_0n}
ej(w0+2π)n=ejw0nej2π=ejw0n
这说明
w
0
w_0
w0的变换范围只能在
0
−
2
π
0-2\pi
0−2π,超出范围就变成原信号了
2. e j w 0 n e^{jw_0n} ejw0n在一定条件下是周期信号
证:
若
e
j
w
0
n
e^{jw_0n}
ejw0n是周期信号,且周期是
N
N
N,那么有
e j w 0 ( n + N ) = e j w 0 n e^{jw_0(n+N)}=e^{jw_0n} ejw0(n+N)=ejw0n= e j w 0 n e j w 0 N e^{jw_0n}e^{jw_0N} ejw0nejw0N.
则 e j w 0 N = 1 e^{jw_0N}=1 ejw0N=1,那么 w 0 N = 2 π m ( m = 0 , 1 , 2... ) w_0N=2\pi m(m=0,1,2...) w0N=2πm(m=0,1,2...)
所以当且仅当 w 0 = 2 π m N w_0=\frac{2\pi m}{N} w0=N2πm时,信号 e j w 0 n e^{jw_0n} ejw0n为周期信号(即 w 0 w_0 w0是 π \pi π的K倍,K为有理数)
且周期为 N N N,基波频率为 2 π m N \frac{2\pi m}{N} N2πm
举例:
①
x
(
t
)
=
e
2
π
n
/
3
x(t)=e^{2\pi n /3}
x(t)=e2πn/3
显然周期N=3,基波频率为 2 π 3 \frac{2\pi }{3} 32π,此时 m = 1 m=1 m=1;
② x ( t ) = e 3 π n / 4 x(t)=e^{3\pi n /4} x(t)=e3πn/4
此时周期N=8,因为 3 π 4 ∗ 8 = 2 π ∗ 3 \frac{3\pi }{4}*8=2\pi*3 43π∗8=2π∗3,基波频率为 3 π 4 \frac{3\pi }{4} 43π
以上性质对正余弦函数仍适应。
仿真分析:
n=0:1:69;
w_0=2*pi/3;
subplot(2,1,1);
plot(n,sin(w_0*n),'linewidth',1);
title('x=sin(w_0*n)');
subplot(2,1,2);
plot(n,sin((w_0+2*pi)*n),'linewidth',1);
title('x=sin((w_0+2pi)*n)');
2.离散复指数函数集
设基波频域为 w 0 w_0 w0,具有公共周期 N N N(不是最小周期)的一组离散复指数函数集合为 Φ k ( n ) \Phi_k(n) Φk(n), k k k代表第k个函数。
显然 Φ k ( n ) = e j k w 0 n , k = 0 , ± 1 , ± 2 \Phi_k(n)=e^{jkw_0n},k=0,±1,±2 Φk(n)=ejkw0n,k=0,±1,±2
因为 Φ k + N ( n ) = e j ( k + N ) w 0 n = e j k w 0 n e j N w 0 n \Phi_{k+N}(n)=e^{j(k+N)w_0n}=e^{jkw_0n}e^{jNw_0n} Φk+N(n)=ej(k+N)w0n=ejkw0nejNw0n
根据周期复指数函数的特点, e j N w 0 n = e j 2 π m n = 1 e^{jNw_0n}=e^{j2\pi mn}=1 ejNw0n=ej2πmn=1
所以 Φ k ( n ) \Phi_k(n) Φk(n)的不同函数的个数为 N N N,且 Φ k + N = Φ k \Phi_{k+N}=\Phi_{k} Φk+N=Φk
离散傅里叶级数(DFS)
对于周期为 N N N的离散信号 x ( n ) x(n) x(n),根据傅里叶级数进行展开有:
x ( n ) = ∑ k = 0 N X ( k ) e j k w 0 n x(n)=\sum\limits_{k=0}^{N}{{{X(k)e^{jkw_0n}}}} x(n)=k=0∑NX(k)ejkw0n
X ( k ) = 1 N X ( k ) e − j k w 0 n X(k)=\frac{1}{N}{{{X(k)e^{-jkw_0n}}}} X(k)=N1X(k)e−jkw0n
因为只有 N N N个不相同的信号,所以求和范围是0-N
这个变化对的特点是时域周期离散,频域也是周期离散
离散傅里叶变换(DFT)
DFT表达的是周期无限的离散信号,其频谱也是周期无限的,而计算机不能处理无限长的信号,因
此,常常把要处理的信号 x ( n ) x(n) x(n)看成是某个周期信号 x ( n ) ‾ \overline{x(n)} x(n)在一个周期 N N N内的信号,
N N N为 x ( n ) x(n) x(n)的长度。频谱也是 x ( n ) ‾ \overline{x(n)} x(n)一个周期 N N N的部分。
结果与matlab一致。