softmax函数及交叉熵函数求导

softmax函数

这里以神经网络多分类问题为例,假设输出层有 n n n个神经元,输出为 z 1 , z 2 , . . . , z n z_1,z_2,...,z_n z1,z2,...,zn,经过softmax函数后的输出为 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an a i a_i ai的计算公式为:
a i = e z i ∑ j = 1 n e z j a_i=\frac{e^{z_i}}{\sum_{j=1}^{n}{e^{z_j}}} ai=j=1nezjezi

交叉熵损失函数

假设真实标签为 y 1 , y 2 , . . . , y n y_1,y_2,...,y_n y1,y2,...,yn,由于是分类问题,因此 y i y_i yi的取值为0或1,并且 ∑ i = 1 n y i = 1 \sum_{i=1}^{n}y_i=1 i=1nyi=1。则交叉熵损失函数为:
L ( a , y ) = − ∑ i n y i ln ⁡ a i L(\bold{a},\bold{y})=-\sum_{i}^ny_i\ln a_i L(a,y)=inyilnai

求导

下面详细介绍损失函数对 z i z_i zi的导数求解过程。
根据链式求导可知,
∂ L ∂ z i = ∑ j ∂ L ∂ a j ∂ a j ∂ z i \frac{\partial L}{\partial z_i}=\sum_j \frac{\partial L}{\partial a_j}\frac{\partial a_j}{\partial z_i} ziL=jajLziaj
之所以要先对每个 a j a_j aj求导再求和是因为每个 a j a_j aj的计算表达式中都含有 z i z_i zi。另外,由于当 i i i j j j相等以及不等时求导结果不同,因此此式可以进一步写成:
∂ L ∂ z i = ∂ L ∂ a i ∂ a i ∂ z i + ∑ i ≠ j ∂ L ∂ a j ∂ a j ∂ z i \frac{\partial L}{\partial z_i}=\frac{\partial L}{\partial a_i}\frac{\partial a_i}{\partial z_i}+\sum_{i\neq j} \frac{\partial L}{\partial a_j}\frac{\partial a_j}{\partial z_i} ziL=aiLziai+i̸=jajLziaj
i = j i=j i=j时:
∂ a i ∂ z i = ∑ k e z k e z i − ( e z i ) 2 ( ∑ k e z k ) 2 = e z i ∑ k e z k − ( e z i ∑ k e z k ) 2 = a i ( 1 − a i ) \frac{\partial a_i}{\partial z_i}=\frac{\sum_k e^{z_k}e^{z_i}-(e^{z_i})^2}{(\sum_k e^{z_k})^2}=\frac{e^{z_i}}{\sum_k e^{z_k}}-(\frac{e^{z_i}}{\sum_k e^{z_k}})^2=a_i(1-a_i) ziai=(kezk)2kezkezi(ezi)2=kezkezi(kezkezi)2=ai(1ai)
i ≠ j i\neq j i̸=j时:
∂ a j ∂ z i = − e z i ( ∑ k e z k ) 2 e z j = e z i ∑ k e z k e z j ∑ k e z k = − a i a j \frac{\partial a_j}{\partial z_i}=-\frac{e^{z_i}}{(\sum_k e^{z_k})^2}e^{z_j}=\frac{e^{z_i}}{\sum_k e^{z_k}}\frac{e^{z_j}}{\sum_k e^{z_k}}=-a_ia_j ziaj=(kezk)2eziezj=kezkezikezkezj=aiaj
因此
∂ L ∂ z i = ∂ L ∂ a i ∂ a i ∂ z i + ∑ i ≠ j ∂ L ∂ a j ∂ a j ∂ z i = − y i a i a i ( 1 − a i ) + ∑ i ≠ j ( − y j a j ) ( − a i a j ) = a i y i − y i + ∑ i ≠ j a i y j = ∑ j a i y j − y i = a i ∑ j y j − y i = a i − y i \begin{aligned} \frac{\partial L}{\partial z_i}&=\frac{\partial L}{\partial a_i}\frac{\partial a_i}{\partial z_i}+\sum_{i\neq j} \frac{\partial L}{\partial a_j}\frac{\partial a_j}{\partial z_i}\\ &=-\frac{y_i}{a_i}a_i(1-a_i)+\sum_{i\neq j}(-\frac{y_j}{a_j})(-a_ia_j)\\ &=a_iy_i-y_i+\sum_{i\neq j}a_iy_j\\ &=\sum_ja_iy_j-y_i\\ &=a_i\sum_jy_j-y_i\\ &=a_i-y_i \end{aligned} ziL=aiLziai+i̸=jajLziaj=aiyiai(1ai)+i̸=j(ajyj)(aiaj)=aiyiyi+i̸=jaiyj=jaiyjyi=aijyjyi=aiyi

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在深度学习中,交叉熵损失函数常用于多分类问题中衡量模型输出与真实标签之间的差异。对于使用softmax作为激活函数的输出层,我们可以使用交叉熵损失函数进行优化。 设模型的输出为$y=(y_1,y_2,\dots,y_n)$,其中$y_i$表示模型对第$i$类的预测概率。设真实标签为$z=(z_1,z_2,\dots,z_n)$,其中$z_i$表示第$i$类的真实标签(通常取值为0或1)。 交叉熵损失函数定义如下: $$L(y,z)=-\sum_{i=1}^n z_i \log(y_i)$$ 接下来,我们来求解交叉熵对每个预测值的导数。 计算$L$对$y_k$的偏导数: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} \sum_{i=1}^n z_i \log(y_i)$$ 由于交叉熵对于除$y_k$以外的其他预测值$y_i$的偏导数为0(可以通过计算验证),因此只需计算$L$对$y_k$的偏导数。 我们可以使用链式法则来进行求导: $$\frac{\partial L}{\partial y_k} = -\sum_{i=1}^n \frac{\partial}{\partial y_k} (z_i \log(y_i))$$ 当$i\neq k$时,$\frac{\partial}{\partial y_k}(z_i \log(y_i))=0$,因此上式可以简化为: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} (z_k \log(y_k)) = -\frac{z_k}{y_k}$$ 综上所述,我们得到交叉熵损失函数对于softmax模型输出的偏导数为: $$\frac{\partial L}{\partial y_k} = \begin{cases} y_k-z_k, & \text{if $k=j$}\\ y_k, & \text{if $k\neq j$} \end{cases}$$ 其中$j$表示真实标签为1的类别。这样,我们就可以利用该导数来进行反向传播,更新模型参数,从而优化模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值