softmax和交叉熵损失函数求导

今天看了交叉熵损失函数求导,上网上找,发现很多博客写的不清楚,下面具体写一下求导的过程。

关于交叉熵函数的介绍,参见我的上一篇博客。https://blog.csdn.net/qq_39004117/article/details/84260784

首先,在多分类问题中,交叉熵损失函数的定义为:

                                                                             J(\Theta )=- \frac{1}{m}\sum_{i=1}^{m} \sum_{k=1}^{K}y_k^{i}log(\widehat{p_k^i})

                                                    其中,             \widehat{p_i^k}=softmax(\theta_k^TX_i)=\frac{e^{\theta_k^TX_i}}{\sum _je^{\theta_j^TX_i}}

如果样本i的类别是k,那么y_k^i=1,否则y_k^i=0。由此可知,\sum _{k=1}^Ky_k^i=1

我一开始,对于i,k,j,w感觉非常混乱,现在我画一幅图来解释一下:

                                                            

对于每一个类k,我都有一个对应的列向量${\bm{\theta}}$_k(不知道为啥不能加粗。。。),X_i对应图中的向量X,\widehat{p_k^i}是通过softmax算出来的第i个样本属于第k类的概率。

【推导】

w\neq k

\begin{align} \frac{\partial\widehat{p_w^i} }{\partial \theta_k} &= \frac{\partial }{\partial x} \frac{e^{\theta_w^TX}}{\sum_j{e^{\theta_j^TX}}}\nonumber\\&= \frac{0*\sum_j-e^{\theta_w^TX}*(e^{\theta_k^TX}*X)}{\sum_j^2}\nonumber\\&=-\frac{e^{\theta_w^TX}}{\sum_j}*\frac{e^{\theta_k^TX}}{\sum_j}*X\nonumber\\&=-\widehat{p_w^i}*\widehat{p_k^i}*X\nonumber \end{align}

 

w= k

\begin{align} \frac{\partial\widehat{p_k^i} }{\partial \theta_k} &= \frac{\partial }{\partial x} \frac{e^{\theta_k^TX}}{\sum_j{e^{\theta_j^TX}}}\nonumber\\&= \frac{(e^{\theta_k^TX}*X)*\sum_j-e^{\theta_k^TX}*(e^{\theta_k^TX}*X)}{\sum_j^2}\nonumber\\&= \frac{e^{\theta_k^TX}}{\sum_j}*(1-\frac{e^{\theta_k^TX}}{\sum_j})*X\nonumber\\&=(1-\widehat{p_k^i})*\widehat{p_k^i}*X\nonumber \end{align}

(编辑公式废了老大劲了……)

我们现在已经推出来了经过softmax的概率对于\theta_k的偏导,现在我们回头看cross entropy loss function:

\begin{align} \frac{\partial }{\partial \theta_k}J(\Theta )=&\frac{\partial }{\partial \theta_k}- \frac{1}{m}\sum_{i=1}^{m} \sum_{k=1}^{K}y_k^{i}log(\widehat{p_k^i})\nonumber\\&=- \frac{1}{m}\sum_{i=1}^{m}(\sum_{w \neq k}y_w^i \frac{- \widehat{p_w^i}\widehat{p_k^i}X}{\widehat{p_w^i}}+ y_k^{i} \frac{(1-\widehat{p_k^i})\widehat{p_k^i}X}{\widehat{p_k^i}})\nonumber\\&=- \frac{1}{m}\sum_{i=1}^{m}(y_i^k-(\sum_{w \neq k }y_w^i+y_k^i)\widehat{p_k^i})X\nonumber\\&=- \frac{1}{m}\sum_{i=1}^{m}(y_k^i- \widehat{p_k^i})X\nonumber \end{align}

至此,推导完毕。

可以直观的看出,预测的值和实际值越接近,损失就越小。

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在深度学习中,交叉熵损失函数常用于多分类问题中衡量模型输出与真实标签之间的差异。对于使用softmax作为激活函数的输出层,我们可以使用交叉熵损失函数进行优化。 设模型的输出为$y=(y_1,y_2,\dots,y_n)$,其中$y_i$表示模型对第$i$类的预测概率。设真实标签为$z=(z_1,z_2,\dots,z_n)$,其中$z_i$表示第$i$类的真实标签(通常取值为0或1)。 交叉熵损失函数定义如下: $$L(y,z)=-\sum_{i=1}^n z_i \log(y_i)$$ 接下来,我们来解交叉熵对每个预测值的导数。 计算$L$对$y_k$的偏导数: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} \sum_{i=1}^n z_i \log(y_i)$$ 由于交叉熵对于除$y_k$以外的其他预测值$y_i$的偏导数为0(可以通过计算验证),因此只需计算$L$对$y_k$的偏导数。 我们可以使用链式法则来进行求导: $$\frac{\partial L}{\partial y_k} = -\sum_{i=1}^n \frac{\partial}{\partial y_k} (z_i \log(y_i))$$ 当$i\neq k$时,$\frac{\partial}{\partial y_k}(z_i \log(y_i))=0$,因此上式可以简化为: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} (z_k \log(y_k)) = -\frac{z_k}{y_k}$$ 综上所述,我们得到交叉熵损失函数对于softmax模型输出的偏导数为: $$\frac{\partial L}{\partial y_k} = \begin{cases} y_k-z_k, & \text{if $k=j$}\\ y_k, & \text{if $k\neq j$} \end{cases}$$ 其中$j$表示真实标签为1的类别。这样,我们就可以利用该导数来进行反向传播,更新模型参数,从而优化模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值