1. FM算法

关于FM算法,已经有很多文章将原理讲的很清楚了,这里记录一下个人的想法以及实践中的处理方式,如有不对,还请指正。

1. FM算法原理

FM算法的输出由2部分组成,分别为线性层和二阶交互层,公式为:在这里插入图片描述
而对于输入数据x,从原论文给出的图中,可以知道既然包含了数值特征,也包含了类别特征。对于类别特征处理方式为One-Hot编码。
在这里插入图片描述

2. 实践中的问题

2.1 线性层中的离散特征

前面提到了FM一部分输出为线性层,但我们知道对于离散特征进行独热编码后,是很稀疏的。如果就这样直接与数值特征拼接后送入线性层,这会造成很多参数训练不充分。
阅读DeepCTR的代码,其中对类别特征如何送入线性层有如下的处理方式:

  • 对类别特征进行Embedding编码,不过送入线性层的离散特征编码后维度为dim=1;
  • 将编码后的类别特征,再与数值特征进行拼接,送入线性层;

至于数值特征,可以做一个归一化操作,比如MinMaxScaler(),Standard

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值