关于FM算法,已经有很多文章将原理讲的很清楚了,这里记录一下个人的想法以及实践中的处理方式,如有不对,还请指正。
1. FM算法原理
FM算法的输出由2部分组成,分别为线性层和二阶交互层,公式为:
而对于输入数据x,从原论文给出的图中,可以知道既然包含了数值特征,也包含了类别特征。对于类别特征处理方式为One-Hot
编码。
2. 实践中的问题
2.1 线性层中的离散特征
前面提到了FM
一部分输出为线性层,但我们知道对于离散特征进行独热编码后,是很稀疏的。如果就这样直接与数值特征拼接后送入线性层,这会造成很多参数训练不充分。
阅读DeepCTR的代码,其中对类别特征如何送入线性层有如下的处理方式:
- 对类别特征进行
Embedding
编码,不过送入线性层的离散特征编码后维度为dim=1
; - 将编码后的类别特征,再与数值特征进行拼接,送入线性层;
至于数值特征,可以做一个归一化操作,比如MinMaxScaler(),Standard