【Prompt Engineering】5 文本转换

一、引言

  • LLM(大型语言模型)擅长文本转换,如多语种翻译、拼写及语法纠正、语气调整、格式转换等。
  • 本章节介绍如何使用编程和API接口实现文本转换功能。
  • 需要OpenAI包,加载API密钥,定义getCompletion函数。
from zhipuai import ZhipuAI
# 导入第三方库
import os
key = " "
zhipu_client = ZhipuAI(api_key = key)
def get_completion(prompt, model="glm-3-turbo", temperature=0): 
    messages = [{"role": "user", "content": prompt}]
    response = zhipu_client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=temperature, # 值越低则输出文本随机性越低
    )
    return response.choices[0].message.content

二、文本翻译

2.1 中文转西班牙语
  • 使用Prompt将中文文本翻译成西班牙语。
prompt = f"""
将以下中文翻译成西班牙语: \ 
```您好,我想订购一个搅拌机。```
"""
response = get_completion(prompt)
print(response)
2.2 识别语种
  • 使用Prompt识别给定文本的语种。
prompt = f"""
请告诉我以下文本是什么语种: 
```Combien coûte le lampadaire?```
"""
response = get_completion(prompt)
print(response)
2.3 多语种翻译
  • 使用Prompt将文本翻译成多种语言,如中文、英文、法语和西班牙语。
prompt = f"""
请将以下文本分别翻译成中文、英文、法语和西班牙语: 
```I want to order a basketball.```
"""
response = get_completion(prompt)
print(response)
2.4 同时进行语气转换
  • 使用Prompt将文本翻译成不同语气的同一种语言,如正式与非正式语气。
prompt = f"""
请将以下文本翻译成中文,分别展示成正式与非正式两种语气: 
```Would you like to order a pillow?```
"""
response = get_completion(prompt)
print(response)
2.5 通用翻译器
  • 识别不同语言的消息并翻译成目标用户的母语,实现跨国交流。
user_messages = [
  "La performance du système est plus lente que d'habitude.",  # System performance is slower than normal         
  "Mi monitor tiene píxeles que no se iluminan.",              # My monitor has pixels that are not lighting
  "Il mio mouse non funziona",                                 # My mouse is not working
  "Mój klawisz Ctrl jest zepsuty",                             # My keyboard has a broken control key
  "我的屏幕在闪烁"                                             # My screen is flashing
]
import time
for issue in user_messages:
    time.sleep(20)
    prompt = f"告诉我以下文本是什么语种,直接输出语种,如法语,无需输出标点符号: ```{issue}```"
    lang = get_completion(prompt)
    print(f"原始消息 ({lang}): {issue}\n")

    prompt = f"""
    将以下消息分别翻译成英文和中文,并写成
    中文翻译:xxx
    英文翻译:yyy
    的格式:
    ```{issue}```
    """
    response = get_completion(prompt)
    print(response, "\n=========================================")

三、语气与写作风格调整

  • 根据受众对象调整写作语气,如将俚语转换为商务信函格式。
prompt = f"""
将以下文本翻译成商务信函的格式: 
```小老弟,我小羊,上回你说咱部门要采购的显示器是多少寸来着?```
"""
response = get_completion(prompt)
print(response)

四、文件格式转换

  • 将不同格式的文件转换为其他格式,如JSON到HTML。
data_json = { "resturant employees" :[ 
    {"name":"Shyam", "email":"shyamjaiswal@gmail.com"},
    {"name":"Bob", "email":"bob32@gmail.com"},
    {"name":"Jai", "email":"jai87@gmail.com"}
]}
prompt = f"""
将以下Python字典从JSON转换为HTML表格,保留表格标题和列名:{data_json}
"""
response = get_completion(prompt)
print(response)
from IPython.display import display, Markdown, Latex, HTML, JSON
display(HTML(response))

五、拼写及语法纠正

  • 校对文本,纠正拼写和语法错误。
  • 循环遍历句子列表,要求模型校对文本,输出纠正后的文本或“未发现错误”。
text = [ 
  "The girl with the black and white puppies have a ball.",  # The girl has a ball.
  "Yolanda has her notebook.", # ok
  "Its going to be a long day. Does the car need it’s oil changed?",  # Homonyms
  "Their goes my freedom. There going to bring they’re suitcases.",  # Homonyms
  "Your going to need you’re notebook.",  # Homonyms
  "That medicine effects my ability to sleep. Have you heard of the butterfly affect?", # Homonyms
  "This phrase is to cherck chatGPT for spelling abilitty"  # spelling
]
for i in range(len(text)):
    time.sleep(20)
    prompt = f"""请校对并更正以下文本,注意纠正文本保持原始语种,无需输出原始文本。
    如果您没有发现任何错误,请说“未发现错误”。
    
    例如:
    输入:I are happy.
    输出:I am happy.
    ```{text[i]}```"""
    response = get_completion(prompt)
    print(i, response)

六、综合样例

  • 展示如何用一段Prompt同时进行文本翻译、拼写纠正、风格调整和格式转换。
  • 将英文评论文本转化为中文,调整为淘宝评论风格,并输出为Markdown格式。
text = f"""
Got this for my daughter for her birthday cuz she keeps taking \
mine from my room.  Yes, adults also like pandas too.  She takes \
it everywhere with her, and it's super soft and cute.  One of the \
ears is a bit lower than the other, and I don't think that was \
designed to be asymmetrical. It's a bit small for what I paid for it \
though. I think there might be other options that are bigger for \
the same price.  It arrived a day earlier than expected, so I got \
to play with it myself before I gave it to my daughter.
"""
prompt = f"""
针对以下三个反引号之间的英文评论文本,
首先进行拼写及语法纠错,
然后将其转化成中文,
再将其转化成优质淘宝评论的风格,从各种角度出发,分别说明产品的优点与缺点,并进行总结。
润色一下描述,使评论更具有吸引力。
输出结果格式为:
【优点】xxx
【缺点】xxx
【总结】xxx
注意,只需填写xxx部分,并分段输出。
将结果输出成Markdown格式。
```{text}```
"""
response = get_completion(prompt)
display(Markdown(response))

总结

  • LLM能够处理复杂的文本转换任务,包括翻译、格式转换、语气调整和语法纠正。
  • 通过编程和API接口,可以实现自动化的文本转换功能,提高工作效率。
  • 综合样例展示了LLM在文本转换中的多样性和灵活性,能够满足不同的业务需求。
<think>好的,用户想了解预训练转换器的模型架构、应用场景和实现方法。首先,我需要整理这些方面的信息,确保内容准确且结构清晰。根据提供的引用,特别是引用[4]提到了生成式预训练Transformer的应用与实现,这可能是一个关键点。 首先,模型架构方面,预训练转换器通常基于Transformer结构,包括自注意力机制和前馈网络。需要解释编码器和解码器的结构,以及多头注意力的作用。可能还需要提到不同变体,如BERT和GPT的区别,比如BERT使用双向编码,而GPT是单向的生成模型。 应用场景部分,引用[2]提到BERT在情感分类、问答等任务的应用,引用[4]则讨论了构建交互系统。需要列举常见的应用,如文本生成、翻译、摘要,以及更具体的子,比如智能客服、内容推荐等。同时,结合引用[3]中提到的调教AI和衔接业务,可以强调实际应用中的灵活性和扩展性。 实现方法方面,引用[1]提到加载模型的方式,比如使用transformers库加载预训练模型,并进行增量训练。需要分步骤说明,包括数据准备、模型选择、微调技巧和部署。可能还需要提到使用Hugging Face的库简化流程,以及分布式训练和量化压缩等优化技术。 需要确保回答符合用户的要求,结构清晰,每个部分都有适当的引用支持。如,在模型架构部分,引用[4]的技术细节;在应用场景引用[2]和[4]的子;实现方法则结合引用[1]和[4]的内容。同时,生成的问题需要围绕这三个方面,帮助用户进一步探索。 最后,检查LaTeX格式是否正确,所有数学表达式用$...$,独立公式用$$...$$,并确保引用标识自然添加。如,在提到自注意力机制时,引用相关技术报告,或者在实现步骤提到模型加载时引用[1]。</think>### 预训练转换器的模型架构、应用场景与实现方法 #### 一、模型架构 预训练转换器(如Transformer)的核心架构基于自注意力机制(Self-Attention),其核心组件包括**编码器**和**解码器**堆叠结构。以经典的Transformer为: 1. **编码器层**:由多头自注意力机制和前馈神经网络组成,用于提取输入序列的上下文特征。数学表达式为: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 其中$Q$、$K$、$V$为查询、键、值矩阵,$d_k$为维度缩放因子[^4]。 2. **解码器层**:在编码器基础上增加掩码机制,确保生成时仅依赖历史信息(如GPT系列模型)。 3. **变体**:如BERT(双向编码器)、GPT(单向解码器)和T5(编码器-解码器联合结构)[^1]。 #### 二、应用场景 1. **自然语言处理**: - **文本生成**:如对话系统(ChatGPT)、代码生成(Codex)。 - **文本理解**:情感分析、命名实体识别(引用[2]中的案)。 - **翻译与摘要**:跨语言转换及信息压缩。 2. **跨模态任务**: - 图像描述生成(如CLIP)、多模态问答。 3. **垂直领域**: - 生物医药领域知识推理(如BioMedGPT-LM-7B,引用[1])。 - 金融报告自动生成、法律文书分析[^3]。 #### 三、实现方法 1. **基础流程**: - **数据准备**:清洗文本数据,构建掩码语言建模(MLM)或因果语言建模(CLM)任务。 - **模型选择**:使用Hugging Face Transformers库加载预训练模型(如`Llama-2-7B`或`BERT`,引用[1][2])。 - **微调技巧**:通过领域数据增量训练,调整学习率和分层参数更新。 ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") # 增量训练代码(引用[1]) ``` 2. **优化技术**: - **分布式训练**:使用DeepSpeed或PyTorch FSDP加速。 - **量化压缩**:将FP32权重转为INT8以降低部署成本。 3. **交互系统构建**: - 结合Prompt Engineering实现任务控制(引用[3]),如思维链(Chain-of-Thought)提示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值