Python 深度学习AI - 利用训练好的模型库进行图像分割、一键抠图实例演示,百度深度学习平台飞浆paddlepaddle-gpu的安装与使用

第一章:深度学习平台飞浆 paddle 的环境搭建

① 效率更高的 gpu 版本的安装

通过 python -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple来进行安装。
paddle.utils.run_check() 可以检测 paddle 的安装情况。
在这里插入图片描述

② 判断是否支持 gpu 版本

如果报下面的错误,说明你的显卡不支持 GPU

You are using GPU version PaddlePaddle, but there is no GPU detected on your machine. Maybe CUDA devices is not set properly.
译:
你使用的是GPU版本的PaddlePaddle,但在你的机器上没有检测到GPU。可能CUDA设备设置不正确。

UserWarning: You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default.
译:
用户警告:你正在使用GPU版本的飞桨,但是你的CUDA设备没有正确设置。默认使用CPU设备。

③ 退而求其次,普通版本的安装

那就用下面的命令进行卸载:
python -m pip uninstall paddlepaddle-gpu
卸载后再安装 cpu 版本的:
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
不卸载也可以,上面说会默认使用 cpu 的,也可以正常用,只是不能体验 cpu 的速度了。

④ paddlehub 的安装

然后是安装 paddlehub 了,我们将要用到的训练模型就来自于 paddlehub
python -m pip install paddlehub -i https://mirror.baidu.com/pypi/simple

Successfully installed Babel-2.9.1 Flask-Babel-2.0.0 Jinja2-3.0.1 MarkupSafe-2.0.1 Werkzeug-2.0.1 backports.entry-points-selectable-1.1.0 bce-python-sdk-0.8.61 cfgv-3.3.0 click-8.0.1 colorama-0.4.4 colorlog-5.0.1 cycler-0.10.0 dill-0.3.4 distlib-0.3.2 easydict-1.9 filelock-3.0.12 flake8-3.9.2 flask-2.0.1 gitdb-4.0.7 gitpython-3.1.18 h5py-3.3.0 identify-2.2.11 itsdangerous-2.0.1 jieba-0.42.1 joblib-1.0.1 kiwisolver-1.3.1 matplotlib-3.4.2 mccabe-0.6.1 multiprocess-0.70.12.2 nodeenv-1.6.0 opencv-python-4.5.3.56 packaging-21.0 paddle2onnx-0.7 paddlehub-2.1.0 paddlenlp-2.0.6 pandas-1.3.0 platformdirs-2.0.2 pre-commit-2.13.0 pycodestyle-2.7.0 pycryptodome-3.10.1 pyflakes-2.3.1 pyparsing-2.4.7 python-dateutil-2.8.2 pytz-2021.1 pyyaml-5.4.1 pyzmq-22.1.0 rarfile-4.0 scikit-learn-0.24.2 scipy-1.7.0 seqeval-1.2.2 shellcheck-py-0.7.2.1 smmap-4.0.0 threadpoolctl-2.2.0 toml-0.10.2 tqdm-4.61.2 virtualenv-20.6.0 visualdl-2.2.0`

第二章:调用训练好的库进行图像分割效果演示

① 演示一:ace2p 模型

下面这是原图,接下来演示下不同模型分割图像的效果图。
在这里插入图片描述
这个分割的效果看着还可以。

import paddlehub as hub

seg = hub.Module(name='ace2p')
path = './image/baozi.jpg'
seg.segmentation(paths=[path],visualization=True, output_dir="./image")

每次加载新的模型会下载对应的模型。
在这里插入图片描述
在这里插入图片描述

② 演示二:humanseg_server 模型

下面腿部识别的不是很好。

import paddlehub as hub

seg = hub.Module(name='humanseg_server')
path = './image/baozi.jpg'
seg.segment(paths=[path],visualization=True, output_dir="./image")

在这里插入图片描述

③ 演示三:deeplabv3p_xception65_humanseg 模型

主要训练的模型都是人类图像,所以这个豹子的识别效果差了一些,更多的需要大家自己来尝试了。

import paddlehub as hub

seg = hub.Module(name='deeplabv3p_xception65_humanseg')
path = './image/baozi.jpg'
seg.segmentation(paths=[path],visualization=True, output_dir="./image")

在这里插入图片描述
喜欢的点个赞❤吧!

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挣扎的蓝藻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值