SLAM面试
文章平均质量分 95
家门Jm
点云学习小白
展开
-
视觉SLAM面试题汇总(一)
1、室内SLAM与自动驾驶SLAM有什么区别?这是个开放题,参考无人驾驶技术与SLAM的契合点在哪里,有什么理由能够让SLAM成为无人驾驶的关键技术?都属于SLAM的问题范畴,但应用场景不同,技术上的侧重点也不同。 参考https://www.bilibili.com/video/BV17X4y1w7yL高翔老师《智行者SLAM专家高翔博士:室内无人车和室外无人车有什么区别》 室内更倾向于叫机器人,室内的特点一是面积比较小,二是没有什...原创 2021-07-15 10:54:55 · 1068 阅读 · 0 评论 -
视觉SLAM面试题汇总(二)
本节目录如下:29、3D地图点是怎么存储的?表达方式? 以ORB SLAM2为例,3D地图点是以类的形式存储的,在类里面除了存储3D地图点的空间坐标; 同时还存储了3D点对应的(多个)图像点的描述子(其实就是BRIEF描述子),用来快速进行与特征点的匹配; 同时还用一个map存储了与其有观测关系的关键帧以及其在关键帧中的Index等等。class MapPoint{ // ... protected: // Positio...原创 2021-07-26 20:19:26 · 832 阅读 · 0 评论 -
视觉SLAM面试题汇总(三)
北京某自动驾驶公司:1. 点云的聚类;求法向量;多个点集,求点集的法向量;2. LM算法里面lamda的作用;3. KD-Tree4. 描述子距离的匹配的方法?除了暴力匹配还有什么方法?(提示:点对匹配的集中方式:暴力匹配;FLANN匹配;使用词袋模型进行初步筛选的匹配;重投影的匹配)5. ORB-SLAM中特征匹配6. 四叉树特征点均匀化原理7. 对于非二进制的描述子,如sift描述子,是如何计算出他们之间的距离的?8. 哈希表9. ORB-SLAM2的整体流程..原创 2021-07-15 16:48:13 · 4356 阅读 · 0 评论 -
C++面试题汇总
本节目录如下:1、 C++中map与unordered_map的区别(1)头文件:map: #include < map >unordered_map: #include < unordered_map >原创 2021-07-15 15:17:07 · 4168 阅读 · 0 评论 -
SLAM前端知识汇总
1、常用特征点汇总1.1 Fast特征点 《SLAM14讲》中LK光流中用的特征点就是Fast特征点,然后对这些特征点进行光流追踪。在8.3.2节的LK光流代码,第1帧提取的就是Fast特征点,注意代码的写法:if ( 0 == index ){ // “只”对第一帧提取FAST特征点 vector<cv::KeyPoint> kps; cv::Ptr<cv::FastFeatureDetector> dete...原创 2021-08-04 15:24:05 · 1082 阅读 · 0 评论 -
《SLAM14讲》后端知识汇总及非线性优化
1、介绍一些你熟悉的非线性优化库 非线性优化库一般有ceres和g2o两种,我比较熟悉的是g2o,看下g2o的结构:它表示了g2o中的类结构。 首先根据前面的代码经验可以发现,我们最终使用的optimizer是一个SparseOptimizer对象,因此我们要维护的就是它(对它进行各种操作)。 一个SparseOptimizer是一个可优化图(OptimizableGraph),也是一个超图(HyperGraph)。而图中有很多顶点(Vertex)和边(Ed...原创 2021-07-29 23:13:26 · 422 阅读 · 0 评论 -
C++ STL相关知识汇总
1、STL 6 大部件1、STL数据结构:1、vector:底层数据结构为数组,支持快速随机访问2、list:底层数据结构为双向链表,支持快速增删3、deque:底层数据结构为中央控制器和多个缓冲区,详细见STL源码剖析P146,支持首尾(中间不能)快速增删,也支持随机访问4、statck:底层一般用list或deque实现,封闭头部即可,不用vector的原因应该是容量大小有限制,扩容耗时5、queue:底层一般用list或deque实现,封闭头部即可,...原创 2021-07-19 11:23:22 · 541 阅读 · 0 评论 -
语义SLAM综述
1、摘要 SLAM技术在计算机视觉和机器人领域中占有重要低位。传统的SLAM框架采用了较强的静态世界假设,便于分析。大多基于小区域静态环境。在大规模的动态环境下,它们大多难以获得较好的性能,系统的准确性、快速性仍需加强。如何应对动态环境是一个非常重要而又备受关注的问题。现有的面向动态场景的SLAM系统要么只利用语义信息,要么只利用几何信息,要么以松散耦合的方式天真地组合它们的结果。近年来,一些研究集中在语义信息与视觉SLAM的结合上。2、当前现状...转载 2021-08-15 18:54:10 · 2974 阅读 · 0 评论 -
解方程AX=b与矩阵分解:奇异值分解(SVD分解) 特征值分解 QR分解 三角分解 LLT分解
本文转自大佬博客:https://blog.csdn.net/Hansry/article/details/1041746511. 前言本博客主要介绍在SLAM问题中常常出现的一些线性代数相关的知识,很早就想整理一下了,刚好看到Manii 的博客对矩阵分解的方法进行了总结,以方便求解线性方程组AX=B。在基于《计算机视觉—算法与应用》附录A 的内容 ,重点介绍了各种分解的适用情况、分解的特点。1.1 为什么要进行矩阵分解?1、矩阵分解可以在...转载 2021-08-12 21:46:33 · 3109 阅读 · 0 评论 -
G2O 图优化基础与示例汇总
本文针对经常遇到的g2o示例进行汇总,试图总结g2o的常用编程套路和最小化残差模型的建模套路。参考博客:1、https://zhaoxuhui.top/blog/2018/04/10/g2o&bundle_adjustment.html#2g2o%E5%BA%93%E7%AE%80%E4%BB%8B%E4%B8%8E%E7%BC%96%E8%AF%91%E5%AE%89%E8%A3%85G2O图优化基础和S...原创 2021-08-05 19:50:04 · 1337 阅读 · 0 评论 -
三角化相关总结
本文转自大佬博客https://blog.csdn.net/weixin_44580210/article/details/90679847《多视图几何总结——三角形法》。 在《视觉SLAM14讲》中,三角测量那一节简单介绍了如何通过两帧中匹配的点获得空间点深度,这对单目相机的成像是非常重要的,其证明如下,设,分别为两帧中匹配好的特征点的归一化坐标,然后满足:我们已经知道变换矩阵R和t,然后上面方程左乘一个就可以求得,如下:很简单的,文中也...转载 2021-07-27 23:25:27 · 1971 阅读 · 0 评论 -
ORB-SLAM2中关键知识点总结
目录1、ORB SLAM2的总体框架是怎样的?2、ORB SLAM2是怎样完成初始化的?3、ORB SLAM2是如何进行Tracking的?4、ORB SLAM2是如何选取关键帧的?5、ORB SLAM2中有哪些(非线性/后端)优化相关的操作?6、ORB SLAM2中有维护了哪些图?7、ORB SLAM2中是如何对地图点进行筛选的?8. ORB SLAM2中是如何对关键帧进行剔除的?9. ORB SLAM2中Loop Closing的具体实现流程是怎样的?10. ..转载 2021-07-26 19:32:19 · 3089 阅读 · 1 评论