图像ROI及通道的拆分与合并

本文深入探讨了ROI(感兴趣区域)的概念及其在图像处理中的应用,包括如何使用方框、圆、椭圆等形状定义ROI,并通过算子进行进一步处理。此外,文章还详细介绍了通道的拆分与合并技巧,展示了如何利用Python的OpenCV库实现这些功能。
摘要由CSDN通过智能技术生成

ROI(region of interest),感兴趣的区域

从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域

可以通过各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理

import cv2
import numpy as np
a = cv2.imread("e:\\lina.png",cv2.IMREAD_UNCHANGED)
fengjing = cv2.imread("e:\\fengjing.jpg",cv2.IMREAD_UNCHANGED)
b = np.ones((101,101,3)) #3个通道,101行101列
b = a[220:400,250:350]
a[0:180,0:100] = b
fengjing[0:180,0:100] = b
cv2.imshow("original",a)
cv2.imshow("face",b)
cv2.imshow("fengjing",fengjing)
cv2.waitKey(0)
cv2.destroyAllWindows()  

通道的拆分与合并

1、拆分通道

img=cv2.imread('abc')
b=img[:,:,0]
g=img[:,:,1]
r=img[:,:,2]
import cv2
import numpy as np
img = cv2.imread("e:\\lina.png",cv2.IMREAD_UNCHANGED)
b,g,r=cv2.split(img)
cv2.imshow("B",b)
cv2.imshow("G",g)
cv2.imshow("R",r)
m=cv2.merge([b,g,r])
cv2.imshow("merge",m)
m1=cv2.merge([r,g,b])
cv2.imshow("merge",m1)
cv2.waitKey()
cv2.destroyAllWindows() 

2、合并通道

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值