【Windows系统】向量数据库Milvus安装教程

目录

一、修改docker镜像

二、安装milvus服务

三、安装Attu可视化工具

四、通过API测试服务


首先我们Windows系统需要安装docker desktop工具,安装工具前还要安装wsl,这里可以查询其它博客安装,这里不多赘述。

一、修改docker镜像

将以下镜像复制到docker desktop中:

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "insecure-registries": [
    "docker.mirrors.ustc.edu.cn"
  ],
  "registry-mirrors": [
    "https://docker.1panelproxy.com",
    "https://2a6bf1988cb6428c877f723ec7530dbc.mirror.swr.myhuaweicloud.com",
    "https://docker.m.daocloud.io",
    "https://hub-mirror.c.163.com",
    "https://mirror.baidubce.com",
    "https://your_preferred_mirror",
    "https://dockerhub.icu",
    "https://docker.registry.cyou",
    "https://docker-cf.registry.cyou",
    "https://dockercf.jsdelivr.fyi",
    "https://docker.jsdelivr.fyi",
    "https://dockertest.jsdelivr.fyi",
    "https://mirror.aliyuncs.com",
    "https://dockerproxy.com",
    "https://mirror.baidubce.com",
    "https://docker.m.daocloud.io",
    "https://docker.nju.edu.cn",
    "https://docker.mirrors.sjtug.sjtu.edu.cn",
    "https://docker.mirrors.ustc.edu.cn",
    "https://mirror.iscas.ac.cn",
    "https://docker.rainbond.cc"
  ]
}

二、安装milvus服务

下载地址:https://github.com/milvus-io/milvus/releases/download/v2.5.5/milvus-standalone-docker-compose.ymlhttps://github.com/milvus-io/milvus/releases/download/v2.5.5/milvus-standalone-docker-compose.yml需要在电脑上安装docker compose

然后进入到目录cmd窗口执行:

docker-compose up -d

耐心等待,第一次因为会拉取很多镜像,所以会慢一些。

安装完成!

然后我们可以访问官方提供的webUI:http://127.0.0.1:9091/webui

三、安装Attu可视化工具

我们也可以通过一个可视化的工具 Attu 来连接milvus 服务 : Releases · zilliztech/attu · GitHubWeb UI for Milvus Vector Database. Contribute to zilliztech/attu development by creating an account on GitHub.https://github.com/zilliztech/attu/releases

下载后直接双击打开即可。

四、通过API测试服务

添加依赖:

<dependency>
    <groupId>io.milvus</groupId>
    <artifactId>milvus-sdk-java</artifactId>
    <version>2.2.10</version> <!-- 请根据需要选择最新版本 -->
</dependency>

测试服务是否正常:

package com.oracle.ai.milvus;

import io.milvus.client.MilvusServiceClient;
import io.milvus.param.ConnectParam;
import io.milvus.param.collection.HasCollectionParam;
import org.junit.Test;

public class MilvusDemo {

    @Test
    public void testFun1() throws Exception {
        ConnectParam connectParam = ConnectParam.newBuilder()
                .withHost("localhost")
                .withPort(19530)
                .build();
        MilvusServiceClient client = new MilvusServiceClient(connectParam);
        HasCollectionParam hasCollectionParam = HasCollectionParam.newBuilder()
                .withCollectionName("test")
                .build();
        // 确认连接状态
        System.out.println("Connected to Milvus: " + client.hasCollection(hasCollectionParam));

    }

}

### 不同操作系统上的 Milvus 向量数据库安装方法 #### MacOS 上的 Milvus 安装 在 MacOS 系统中,可以通过 Docker 来完成 Milvus安装。首先需要确保本地已经正确安装并配置好 Docker 环境[^1]。接着通过运行以下命令拉取官方镜像并启动容器: ```bash docker pull milvusdb/milvus:latest docker run -d --name milvus_cpu -p 19530:19530 -p 8080:8080 \ -v /path/to/data:/var/lib/milvus \ milvusdb/milvus:latest ``` 上述命令会下载最新版本的 Milvus 镜像,并将其绑定到主机端口 `19530` 和 `8080`,分别用于服务通信和管理界面访问。 --- #### Windows 下的 Milvus 安装 对于 Windows 用户而言,同样推荐使用 Docker 进行 Milvus 的部署。前提条件同样是确认已成功安装 Docker Desktop 并启用 WSL2 支持功能[^2]。执行如下指令即可快速搭建环境: ```bash docker pull milvusdb/milvus:latest docker run -d --name milvus_cpu -p 19530:19530 -p 8080:8080 \ -v C:\path\to\data:/var/lib/milvus \ milvusdb/milvus:latest ``` 这里需要注意的是,在指定数据存储路径时应采用兼容于 Linux 文件系统的写法(如 `/c/path/to/data`),或者直接利用绝对路径映射至宿主机目录。 --- #### 使用 MySQL 类似方式操作 Milvus 数据库 无论是哪种平台,一旦完成了基础架构构建之后,就可以借助 Python SDK 或其他支持的语言驱动程序连接实例,进而实现诸如创建集合、插入记录等功能。例如下面展示了一段简单的 Python 脚本用来初始化客户端对象并与远程服务器交互: ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection connections.connect("default", host="localhost", port="19530") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128) ] schema = CollectionSchema(fields, "Example collection") collection = Collection("example_collection", schema) print(f"Collection created successfully! {collection}") ``` 此脚本定义了一个新的表结构,其中包含整数类型的主键字段以及维度大小固定的浮点型数组列作为嵌入特征表示形式。 --- #### 向量数据库的应用价值 向量数据库特别适用于人工智能领域中的相似度检索任务,比如图像识别、自然语言处理等领域内的近邻查询需求。相比于传统关系型数据库仅能基于精确匹配返回结果集的方式,Milvus 提供了高效的 ANN (Approximate Nearest Neighbor) 查询能力,从而极大地提升了大规模高维空间数据分析效率.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Calvad0s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值