//使用Otsu算法进行灰度图的全局阈值处理 输入灰度图像返回阈值
uchar Otsu(Mat &img)
{
int i,j;
//行列
int row = img.rows;
int col = img.cols;
double rc = row*col;
//存储各级灰度的个数 初始为0
int n[256] = {0};
uchar *ptr;
for(i = 0; i < row; ++i)
{
ptr = img.ptr<uchar>(i);
for (j = 0; j < col; ++j)
{
n[ptr[j]]++;
}
}
//归一化 并且 计算累积和 、 累计均值 和 全局均值
double p[256];
double m[256];
double mg;
//计算概率的时候注意 如果都是整型 结果为0
p[0] = n[0]/rc;
m[0] = 0;
mg = 0;
for(i = 1;i < 256; i++)
{
//计算概率 求全局均值
p[i] = n[i]/rc;
m[i] = i*p[i];
mg += m[i];
//进行累加
p[i]+=p[i-1];
m[i]+=m[i-1];
}
//阈值
uchar k = 0;
//类间方差
double a = 0,a2;
for(i = 0;i < 256; i++)
{ //这里少加个判断 if(p[i]==0||p[i]==1) continue;
a2 = (mg*p[i]-m[i])*(mg*p[i]-m[i])/(p[i]*(1-p[i]));
if(a2 > a)
{
k = i;
a = a2;
}
}
return k;
}
opencv 实现Otsu全局阈值处理
最新推荐文章于 2024-09-22 00:45:00 发布