卷积神经网络学习笔记(二):CNN代码实例

对于刚刚入门神经网络,以及初学TensorFlow的我来说,讲已有的知识转化成不常接触的代码确实不是一件很容易的事情。看一篇CNN代码,虽然是别人写好有注释的笔记,但是个人认为真的是很困难的(相信遇到这类困难的不只我一个)。在边看边写的过程中,要无数次的查阅TF的官方文档,但是如此,还是要坚持去看下去。以一篇CNN的实例代码,做详细的解释,希望对自己能有所帮助,如若能解和我有同样困难人之困惑,便更是荣幸。

from __future__ import division, print_function, absolute_import

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

如上是做一些数据及包的导入,不做太多的解释。但是其中有一个问题,对于初次使用Pycharm的朋友, Matplotlib图表不能在Pycharm中显示。解决此问题请参考:

http://blog.csdn.net/xinluqishi123/article/details/63523531

# Training Parameters
learning_rate = 0.001
num_steps = 2000
batch_size = 128

# Network Parameters
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units

设置一些初始的参数。


# Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):

    # Define a scope for reusing the variables
    with tf.variable_scope('ConvNet', reuse=reuse):
        # TF Estimator input is a dict, in case of multiple inputs
        x = x_dict['images']

        # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
        # Reshape to match picture format [Height x Width x Channel]
        # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
        x = tf.reshape(x, shape=[-1, 28, 28, 1])

        # Convolution Layer with 32 filters and a kernel size of 5
        conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
        conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

        # Convolution Layer with 32 filters and a kernel size of 5
        conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
        conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

        # Flatten the data to a 1-D vector for the fully connected layer
        fc1 = tf.contrib.layers.flatten(conv2)

        # Fully connected layer (in tf contrib folder for now)
        fc1 = tf.layers.dense(fc1, 1024)
        # Apply Dropout (if is_training is False, dropout is not applied)
        fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

        # Output layer, class prediction
        out = tf.layers.dense(fc1, n_classes)

    return out

上面的代码,建立了一个卷积神经网络。

# Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):

    # Build the neural network
    # Because Dropout have different behavior at training and prediction time, we
    # need to create 2 distinct computation graphs that still share the same weights.
    logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)
    logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False)

    # Predictions
    pred_classes = tf.argmax(logits_test, axis=1)
    pred_probas = tf.nn.softmax(logits_test)

    # If prediction mode, early return
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) 

    # Define loss and optimizer
    loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step())

    # Evaluate the accuracy of the model
    acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)

    # TF Estimators requires to return a EstimatorSpec, that specify
    # the different ops for training, evaluating, ...
    estim_specs = tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=pred_classes,
      loss=loss_op,
      train_op=train_op,
      eval_metric_ops={'accuracy': acc_op})

    return estim_specs
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于计算机专业的学生而言,参加各类比赛能够带来多方面的益处,具体包括但不限于以下几点: 技能提升: 参与比赛促使学生深入学习和掌握计算机领域的专业知识与技能,如编程语言、算法设计、软件工程、网络安全等。 比赛通常涉及实际问题的解决,有助于将理论知识应用于实践中,增强问题解决能力。 实践经验: 大多数比赛都要求参赛者设计并实现解决方案,这提供了宝贵的动手操作机会,有助于积累项目经验。 实践经验对于计算机专业的学生尤为重要,因为雇主往往更青睐有实际项目背景的候选人。 团队合作: 许多比赛鼓励团队协作,这有助于培养学生的团队精神、沟通技巧和领导能力。 团队合作还能促进学生之间的知识共享和思维碰撞,有助于形成更全面的解决方案。 职业发展: 获奖经历可以显著增强简历的吸引力,为求职或继续深造提供有力支持。 某些比赛可能直接与企业合作,提供实习、工作机会或奖学金,为学生的职业生涯打开更多门路。 网络拓展: 比赛是结识同行业人才的好机会,可以帮助学生建立行业联系,这对于未来的职业发展非常重要。 奖金与荣誉: 许多比赛提供奖金或奖品,这不仅能给予学生经济上的奖励,还能增强其成就感和自信心。 荣誉证书或奖状可以证明学生的成就,对个人品牌建设有积极作用。 创新与研究: 参加比赛可以激发学生的创新思维,推动科研项目的开展,有时甚至能促成学术论文的发表。 个人成长: 在准备和参加比赛的过程中,学生将面临压力与挑战,这有助于培养良好的心理素质和抗压能力。 自我挑战和克服困难的经历对个人成长有着深远的影响。 综上所述,参加计算机领域的比赛对于学生来说是一个全面发展的平台,不仅可以提升专业技能,还能增强团队协作、沟通、解决问题的能力,并为未来的职业生涯奠定坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值