1. 卷积
4 × 4 4×4 4×4 的输入矩阵 I I I 和 3 × 3 的卷积核 K K K:
- 在步长(stride)为 1 时,输出的大小为 ( 4 − 3 + 1 ) × ( 4 − 3 + 1 )
计算公式:
- 输入图片矩阵 I I I 大小: w × w w × w w×w
- 卷积核 K K K: k × k k × k k×k
- 步长 S S S: s s s
- 填充大小(padding): p p p
o = ( w − k + 2 p ) s + 1 o = \frac{(w − k + 2p )}{s}+1 o=s(w−k+2p)+1
输出图片大小为: o × o o × o o×o
- 步长为2,卷积核为
3*3
,p=0的卷积情况如下:

当卷积函数中padding='same'
时,会动态调整
p
p
p 值,确保
o
=
w
o = w
o=w ,即保证输入与输出一致。例如:输入是 28*28*1
输出也为 28*28*1
。
- 步长为1,卷积核为
3*3
,padding='same'
的卷积情况如下:
实例:
7
∗
7
7*7
7∗7 的 input,
3
∗
3
3*3
3∗3 的 kernel,无填充,步长为1,则
o
=
(
7
−
3
)
1
+
1
o = \frac{(7 − 3 )}{1}+1
o=1(7−3)+1也即 output size 为
5
∗
5
5*5
5∗5
7
∗
7
7*7
7∗7 的 input,
3
∗
3
3*3
3∗3 的 kernel,无填充,步长为2,则
o
=
(
7
−
3
)
2
+
1
o = \frac{(7 − 3 )}{2}+1
o=2(7−3)+1也即 output size 为
3
∗
3
3*3
3∗3