包装器 tf.keras.layers.Bidirectional() 介绍

这篇博客介绍了如何使用TensorFlow的tf.keras.layers.Bidirectional层来构建双向RNN,如LSTM或GRU。该层允许前向和后向RNN的输出通过不同的合并模式(如'concat'、'sum'等)结合。示例代码展示了如何在模型中应用双向LSTM,并进行了编译和配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 功能

实现RNN神经网络的双向构造,比如LSTM、GRU等等

2.参数

tf.keras.layers.Bidirectional(
    layer, merge_mode='concat', weights=None, backward_layer=None,
    **kwargs
)
  • layer:选择模型,如LSTM、GRU
  • merge_mode:前向和后向RNN的输出将被组合的模式。{‘sum’,‘mul’,‘concat’,‘ave’,None}中的一个。如果为None,则将不合并输出,它们将作为列表返回。默认值为“ concat”。
  • weights:官网也没有说明。
  • backward_layer:处理向后输入处理的神经网络,如果未提供,则作为参数传递的图层实例 将用于自动生成后向图层。

注意:

该层的调用参数与包装的RNN层的调用参数相同。请注意,在initial_state此层的调用期间传递参数时,列表中元素列表的前半部分initial_state 将传递给正向RNN调用,而元素列表中的后半部分将传递给后向RNN调用。

代码示例:

model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True),
                        input_shape=(5, 10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值