VOC 2007数据集结构

目录

一、数据集介绍

  • Pascal VOC challenge是一个非常流行的数据集,用于构建和评估用于图像分类、对象检测和分割的算法。
  • 这个挑战的目标是在现实场景中从大量的可视对象类中识别对象(即不是预先分割的对象)。有20个对象类:

    这里是引用

  • 有两个主要任务:
    • 分类
    • 检测

    这里是引用

  • 两个可尝试的额外任务:
    • 分割

    这里是引用

  • 全称
    The PASCAL Visual Object Classes Challenge 2007 (VOC2007)
    • PASCAL:pattern analysis,statistical modelling and computationallearning
    • VOC:visual object classes

二、数据集文件结构

(一)总结构

  • Annotations
  • ImageSets
    • Layout
    • Main
    • Segmentation
  • JPEGImages
  • SegmentationClass
  • SegmentationObject
    在这里插入图片描述
    在这里插入图片描述

(二)Annotations

这个文件夹放置的是对每一张图片的标注,为XML文件。
JPEGImages文件夹中的每张图片都在此有对应的XML文件,文件命名格式为:<图片编号.xml>。
在这里插入图片描述
我们以000001.xml为例进行说明。

  • 000001.jpg:
    在这里插入图片描述
  • 000001.xml:
<annotation>
	<folder>VOC2007</folder>
	<!--文件名-->
	<filename>000001.jpg</filename>
	<!--数据来源-->
	<source>
		<database>The VOC2007 Database</database>
		<annotation>PASCAL VOC2007</annotation>
		<image>flickr</image>
		<flickrid>341012865</flickrid>
	</source>
	<!--图片所有者-->
	<owner>
		<flickrid>Fried Camels</flickrid>
		<name>Jinky the Fruit Bat</name>
	</owner>
	<!--图像尺寸,包括图像的宽、高、色彩通道数-->
	<size>
		<width>353</width>
		<height>500</height>
		<depth>3</depth>
	</size>
	<!--是否用于分割,0表示用于,1表示不用于-->
	<segmented>0</segmented>
	<!--object表示在图像中进行了标注的物体-->
	<object>
		<!--物体类别-->
		<name>dog</name>
		<!--拍摄角度-->
		<pose>Left</pose>
		<!--是否被裁剪,0表示完整,1表示不完整-->
		<truncated>1</truncated>
		<!--是否容易被识别,0表示容易,1表示困难-->
		<difficult>0</difficult>
		<!--bounding box的四个坐标,分别为左上角和右下角的x,y坐标-->
		<bndbox>
			<xmin>48</xmin>
			<ymin>240</ymin>
			<xmax>195</xmax>
			<ymax>371</ymax>
		</bndbox>
	</object>
	<object>
		<name>person</name>
		<pose>Left</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>8</xmin>
			<ymin>12</ymin>
			<xmax>352</xmax>
			<ymax>498</ymax>
		</bndbox>
	</object>
</annotation>

VOC 2007数据集中图片的bounding box的四个坐标分别为左上角和右下角的x,y坐标 ( x m i n , y m i n , x m a x , y m a x ) (x_{min}, y_{min}, x_{max}, y_{max}) (xmin,ymin,xmax,ymax),且图片是1-base的,即图片左上角的点坐标为(1, 1)。
官方文档:The PASCAL Visual Object Classes Challenge
2007 (VOC2007) Development Kit
,page:20
在这里插入图片描述
注释:照我们正常的理解来说,bndbox中表示的应当是矩形框的左下角和右上角坐标,但实际上这里使用的是以左上角为原点的屏幕坐标系,图示如下:
在这里插入图片描述
参考:屏幕坐标系,世界坐标系

(三)ImageSets

ImageSets存放的是每一种类型的challenge对应的图像数据。

  • _train.txt 训练样本集
  • _val.txt 验证样本集
  • _trainval.txt 训练与测试样本汇总
  • _test.txt 测试样本集
1、Layout

Layout下存放的是具有人体部位的数据(人的head、hand、feet等等,这也是VOC challenge的一部分)。
在这里插入图片描述

  • test.txt
    在这里插入图片描述
2、Main

Main下存放的是图像物体识别的数据,总共分为20类。
在这里插入图片描述

  • car_train.txt
    前面是图像编号,后面是正/负样本,其中1表示正样本,-1表示负样本。
    注:还存在0,个人认为是无法判断是正样本还是负样本。
    在这里插入图片描述
  • 001057.jpg:1
    在这里插入图片描述
  • 000987.jpg:0
    在这里插入图片描述
  • 000964.jpg:-1
    在这里插入图片描述
3、Segmentation

Segmentation下存放的是可用于分割的数据。
在这里插入图片描述
在这里插入图片描述

(四)JPEGImages

这个文件夹主要放置数据的原始图片,共9963张图片,文件命名格式为:<图片编号.jpg>。
在这里插入图片描述

(五)SegmentationClass

按类别进行图像分割,同一类别的物体会被标注为相同颜色。
在这里插入图片描述

  • 000032.png
    在这里插入图片描述

(六)SegmentationObject

按对象进行图像分割,即使是同一类别的物体会被标注为不同的颜色。
在这里插入图片描述

  • 000032.png
    在这里插入图片描述

参考

计算机视觉标准数据集整理—PASCAL VOC数据集
VOC2007数据集解析
Pascal VOC Dataset Mirror
数据集:Pascal VOC 2007数据集分析

  • 17
    点赞
  • 70
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值