论文阅读15 | Cross-Modality Person Re-Identification via Modality-aware Collaborative Ensemble Learning

论文:Cross-Modality Person Re-Identification via Modality-aware Collaborative Ensemble Learning(基于模态感知协作集成学习的跨模态行人重识别)

作者:叶茫

1. introduction

一般RGB相机在低照度环境下,如夜间,无法捕捉到有效的外观信息;许多新一代监控摄像头能够自动切换到红外模式,在晚上捕捉人的图像。跨模态reid的任务就是使用一种模态的图像去搜索另外一种模态的图像。

在这里插入图片描述

2. motivation

主要有两点:

  • 之前的研究通常使用模态共享分类器学习跨模态特征表示。分类器层次上的模态差异问题在他们的方法中没有得到很好的解决。
  • 以往的研究通常采用带有共享嵌入层的双流网络来学习模态共享特征,只能捕获高级共享信息,而中层卷积层中的区分性共享信息被忽略。

下图1是之前的网络结构,只在FC层共享参数提取高层共享特征;图2是本文的中层参数共享的网络结构。
在这里插入图片描述
在这里插入图片描述

3. contribution

  • 提出了一种新的模态感知的协同集成(MACE)学习方法,该方法采用改进的中层可共享双流网络(MSTN)进行跨模式VT-ReID学习。并证明了在特征级和分类器级一致地处理模态差异对于VT-ReID是重要的。
  • 引入了一种协同集成学习方案来利用不同分类器之间的关系。它增强了集成输出的可鉴别性和一致性。
  • 基本思想就是处理特征级别和分类器级别的模态差异。① 特征级:使用具有部分共享的网络结构学习特征表示。改进主要在于使用可共享的卷积块来捕获具有区别性的中层特征,而不仅仅是高级特征。② 分类器级:引入模态共享分类器和模态特定分类器来指导特征学习。一方面,模态共享分类器的目标是获取共享信息;另一方面,模态特定分类器学习两个不同模态的身份分类器来处理模态差异。③ 引入了集成学习策略,将不同分类器的所有预测输出组合在一起,形成一个增强的teacher ensemble。④ 为了促进不同分类器之间的知识转移,采用了知识蒸馏技术进行协同学习。通过一致性正则化,利用模态特定分类器和teacher ensemble之间的关系,提高了性能。

4. related work

协作集成学习(Collaborative Ensemble Learning):协同学习的目的是训练一个具有多个分类器的改进网络,这些分类器通过使用相同的网络结构来协同提高特征学习性能。多个分类器的输出预测可以相互提供补充信息。在此思想的启发下,我们提出通过结合模态共享分类器和模态特定分类器的输出来形成教师集成。此外,我们引入协作学习方案,将教师集合与特定模态分类器输出相结合,以提高跨模态人的Re-ID性能。

5. method

5.1 overview

我们提出的方法主要包括三个部分:

  • Feature-Level Modality-aware Learning,引入了一个可共享的中层双流网络进行特征学习,网络结构部分独立、部分共享参数,解决特征级差异。
  • Classifier-Level Modality-aware Learning,同时使用模态共享和模态特定的分类器来处理分类器级的模态差异。
  • Collaborative Ensemble Learning,设计了一种协同集成学习方法,利用不同分类器之间的关系来促进特征学习。
    在这里插入图片描述

5.2 Feature-Level Modality-aware Learning

使用ResNet50作为backbone,

### Cross-Modality Attention Fusion (CMAF) 的 Python 实现 以下是基于现有技术背景构建的一个可能的 **Cross-Modality Attention Fusion (CMAF)** 的简化实现框架。此代码旨在展示如何通过注意力机制融合来自不同模态的信息。 #### 跨模态注意力融合的核心概念 跨模态注意力融合的目标是从不同的输入模态中提取特征并进行有效组合,从而增强模型的表现力。具体来说,可以通过自注意力机制或双向交互的方式完成这一过程[^1]。 ```python import torch import torch.nn as nn import torch.nn.functional as F class ModalityAttention(nn.Module): """ 单一模态内的注意力计算模块。 输入:单个模态的特征张量。 输出:经过注意力加权后的特征表示。 """ def __init__(self, dim_in, dim_out): super(ModalityAttention, self).__init__() self.query = nn.Linear(dim_in, dim_out) self.key = nn.Linear(dim_in, dim_out) self.value = nn.Linear(dim_in, dim_out) def forward(self, features): Q = self.query(features) # Query K = self.key(features).transpose(-2, -1) # Key Transpose V = self.value(features) # Value attention_scores = torch.matmul(Q, K) / torch.sqrt(torch.tensor(K.size(-1), dtype=torch.float)) attention_probs = F.softmax(attention_scores, dim=-1) context = torch.matmul(attention_probs, V) return context class CrossModalityAttentionFusion(nn.Module): """ 跨模态注意力融合模块。 输入:两个模态的特征向量 X 和 Y。 输出:融合后的特征表示 Z。 """ def __init__(self, modality_dim=512, hidden_dim=256): super(CrossModalityAttentionFusion, self).__init__() self.modality_attention_x = ModalityAttention(modality_dim, hidden_dim) self.modality_attention_y = ModalityAttention(modality_dim, hidden_dim) self.cross_modality_fusion = nn.MultiheadAttention(embed_dim=hidden_dim, num_heads=4) def forward(self, x_features, y_features): attended_x = self.modality_attention_x(x_features) # 对X模态应用注意力 attended_y = self.modality_attention_y(y_features) # 对Y模态应用注意力 fused_representation, _ = self.cross_modality_fusion(attended_x.unsqueeze(0), attended_y.unsqueeze(0), attended_y.unsqueeze(0)) # 双向交互 return fused_representation.squeeze(0) # 测试代码 if __name__ == "__main__": batch_size = 8 seq_len = 10 modality_dim = 512 # 假设我们有两个模态的数据 x_input = torch.randn(batch_size, seq_len, modality_dim) # RGB 数据 y_input = torch.randn(batch_size, seq_len, modality_dim) # 红外数据 cmaf_model = CrossModalityAttentionFusion() output = cmaf_model(x_input, y_input) print(f"Fused Representation Shape: {output.shape}") # 应输出 [batch_size, seq_len, hidden_dim] ``` --- 上述代码实现了以下功能: 1. 定义了一个 `ModalityAttention` 类,用于处理单一模态内部的注意力计算。 2. 构建了核心的 `CrossModalityAttentionFusion` 模型,该模型接受两组模态特征作为输入,并通过双向注意力机制生成融合后的特征表示。 3. 使用 PyTorch 中的 `nn.MultiheadAttention` 来实现跨模态间的交互操作。 这种设计借鉴了 Transformer 结构中的多头注意力机制以及双流网络的思想[^2]。 --- ### 注意事项 - 上述代码是一个基础版本,实际部署时需考虑更多细节,例如正则化、损失函数的设计等。 - 如果涉及更复杂的场景(如行人重识别或多标签分类),可以进一步扩展模型结构,加入额外的分支或约束条件[^3][^4]. - 需要根据具体的任务调整超参数设置,比如隐藏层维度 (`hidden_dim`) 或注意力头数 (`num_heads`)。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值