ubuntu16.04 简单的卷积神经网络 cpu和gpu训练时间对比

我的电脑配置:

cpu:i5-4200H

gpu:gtx 950M

 昨天测试了训练一般的神经网络使用cpu和gpu各自的速度,使用gpu比使用cpu大概能节省42%的时间,当时我以为这么个程度已经很不错了。今天我测试了一下使用keras框架训练一个简单的卷积神经网络,在分别测试cpu和gpu所消耗的时间之前,我其实心里是明白的,节约的时间肯定会比42%要多,因为卷积神经网络的数据特性使然,使用gpu计算肯定是最好的选择,但是测试结果还是让我有点吃惊,照例,先上代码:

from __future__ import print_function
import tensorflow as tf
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
with tf.device('/cpu:0'):   #选择使用的设备,设备编号之前已经得到
 
    batch_size = 256
    num_classes = 10
    epochs = 2
 
    # input image dimensions
    img_rows, img_cols = 28, 28
 
    # 国内好像不能直接导入数据集,我们试了几次都不行,后来将数据集下载到本地'~/.keras/datasets/',也就是当前目录(我的是用户文件夹下)下的.keras文件夹中。
    #下载的地址为:https://s3.amazonaws.com/img-datasets/mnist.npz
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
 
    #iamge_data_format选择"channels_last"或"channels_first",该选项指定了Keras将要使用的维度顺序。
    #"channels_first"假定2D数据的维度顺序为(channels, rows, cols),3D数据的维度顺序为(channels, conv_dim1, conv_dim2, conv_dim3)
    if K.image_data_format() == 'channels_first':
        x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
        x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
        input_shape = (1, img_rows, img_cols)
    
    #"channels_last"假定2D数据维度顺序为(rows,cols,channels),3D数据维度顺序为(conv_dim1, conv_dim2, conv_dim3, channels)
    else:
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
        input_shape = (img_rows, img_cols, 1)
 
    #字段类型的转换
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
 
    #数据中每个像素值取值转换为0到1之间
    x_train /= 255
    x_test /= 255
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')
 
    # 将标注的0-9数值转换为一个长度为10的one-hot 编码。注意从tensorflow.examples.tutorials.mnist导入的MNIST数据集标注已经是one-hot编码,
    #所以从tutorials中导入MNIST数据集不需要下面两步。
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
 
    #下面开始搭建模型的架构,首先导入序贯模型(sequential),即多个网络层的线性堆叠
    model = Sequential()
 
    #第一层添加一个2维卷积层,卷积核大小为3×3,激活函数为ReLU,输入shape在‘channels_first’模式下为(samples,channels,rows,cols)
    #在‘channels_last’模式下为(samples,rows,cols,channels)
    model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
    model.add(Conv2D(64, (3, 3), activation='relu'))
 
    #为空域信号施加最大值池化,pool_size取(2,2)代表使图片在两个维度上均变为原长的一半
    model.add(MaxPooling2D(pool_size=(2, 2)))
 
    #Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合。
    model.add(Dropout(0.25))
 
    #Flatten层把多维输入一维化,常用在从卷积层到全连接层的过渡。
    model.add(Flatten())
 
    #Dense层即全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes, activation='softmax'))
 
    #编译用来配置模型的学习过程,下面包括交叉熵损失函数、Adadelta优化器。指标列表metrics在分类问题一般设置为metrics=['accuracy']。
    model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])
 
    #fit函数指定模型训练的epoch数
    model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])

代码是网上搬运的,我的目的只是单纯地测试gpu和cpu在用于训练时的性能差别,最后的运行结果如下:

先上cpu的运行结果:

可以看到,训练一个卷积神经网络的计算量比训练一个bp神经网络的计算量要大很多很多,大约需要三分钟才能完成训练,每个step需要3ms。

上gpu的运行结果:

所需时间仅为用cpu所需时间的1/8,每个step耗时约为335us。

总结:使用cpu训练卷积神经网络时,每个epoch耗时162秒,每个step耗时3ms;使用gpu训练卷积神经网络时,每个epoch耗时约20s,每个step耗时约335us。相比较使用cpu训练卷积神经网络而言,使用gpu训练卷积神经网络可以节省约88%的时间,果然深度学习使用gpu才是王道。

如果想看bp神经网络分别使用cpu和gpu的训练所需时间对比可以看我之前的文章,这个速度测试阶段大概就告一段落了,以后应该会持续更新有关深度学习的文章还有leetcode题解,当然还会更新一些杂七杂八的文章,喜欢可以点个关注!

我试着在windows系统中跑了一下上述代码,使用cpu训练大概需要20分钟,所以我就没有完整地跑完程序,而使用gpu则完全无法进行训练,看来不是用哪个系统跑深度学习更好的问题了,是windows系统根本跑不了稍微复杂一点的神经网络!所以想要学习深度学习算法还是尽早装一个ubuntu系统吧。

 

 

 

 

 

 

  • 7
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
Ubuntu 16.04中安装Docker并使用GPU时出现问题,首先需要确保你的系统配置符合Docker和Caffe GPU的要求。以下是一些可能的解决方案: 1. 确保你的系统支持NVIDIA GPU:首先,检查你的计算机上是否安装了NVIDIA显卡驱动程序。可以使用以下命令检查驱动程序是否已成功安装并正在运行: ``` nvidia-smi ``` 如果该命令能够成功启动,并显示NVIDIA显卡的信息,则说明驱动程序已成功安装。 2. 安装NVIDIA Docker:Docker在GPU支持方面需要使用NVIDIA Docker插件。你可以按照NVIDIA Docker官方文档中的步骤安装,包括添加apt存储库、安装软件包和配置插件等。 3. 配置NVIDIA运行时:在使用Docker时,使用NVIDIA运行时可以确保Docker能够正确地使用GPU。你可以通过编辑`/etc/docker/daemon.json`文件来配置NVIDIA运行时,确保该文件中包含以下内容: ``` { "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] } }, "default-runtime": "nvidia" } ``` 保存并退出该文件,然后重新启动Docker服务: ``` sudo systemctl restart docker ``` 4. 运行Docker容器使用GPU:在运行Caffe容器时,确保你在`docker run`命令中使用了`--runtime=nvidia`选项,以确保容器能够使用GPU。例如: ``` docker run --runtime=nvidia caffe-gpu-image ``` 这将使用NVIDIA运行时在容器中启动Caffe,并允许它使用GPU加速。 通过执行以上步骤,你应该能够在Ubuntu 16.04上安装Docker并成功使用GPU运行Caffe。如果问题仍然存在,请检查是否遵循了正确的安装步骤,并查看系统日志以获取更多信息。如果问题仍然无法解决,你可以搜索相关的错误信息或向社区等其他资源寻求帮助。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值