目录
在城市的道路上,交通堵塞是一个难以解决的问题。随着城市化进程的加快,交通流量不断增加,传统的固定周期交通信号控制方法已经不能满足现代交通的需求。因此,如何通过优化交通信号控制策略来改善交通流量,减少拥堵,成为了一项重要的研究任务。
SUMO (Simulation of Urban Mobility) 是一个开源的、高度可配置的、用于微观交通模拟的平台。SUMO 通过实现各种交通信号控制策略,为研究人员提供了一个进行交通流量模拟和研究的平台。
本文将探讨在 SUMO 中实现的几种自适应交通信号控制策略,包括深度Q学习(DQN)、深度确定性策略梯度(DDPG)、韦氏算法、最大压力算法和自组织交通灯算法。
深度Q学习(DQN)
DQN 是一种基于 Q 学习的深度强化学习算法。通过使用深度神经网络来表示 Q 函数,DQN 能够处理高维度、连续的状态空间。
在交通信号控制中,每个交叉口可以被视为一个智能体,每个智