自适应交通信号控制:SUMO的应用

293 篇文章 559 订阅 ¥19.90 ¥99.00
本文探讨了在SUMO平台中用于优化交通流量的自适应信号控制策略,包括深度Q学习(DQN)、深度确定性策略梯度(DDPG)、韦氏算法、最大压力算法和自组织交通灯算法。这些策略旨在减少拥堵,提高交通效率。虽然在模拟环境中有效,但在实际应用中还需考虑多种因素并进行验证。
摘要由CSDN通过智能技术生成

目录

深度Q学习(DQN)

深度确定性策略梯度(DDPG)

韦氏算法

最大压力算法

自组织交通灯算法


在城市的道路上,交通堵塞是一个难以解决的问题。随着城市化进程的加快,交通流量不断增加,传统的固定周期交通信号控制方法已经不能满足现代交通的需求。因此,如何通过优化交通信号控制策略来改善交通流量,减少拥堵,成为了一项重要的研究任务。

源码下载

SUMO (Simulation of Urban Mobility) 是一个开源的、高度可配置的、用于微观交通模拟的平台。SUMO 通过实现各种交通信号控制策略,为研究人员提供了一个进行交通流量模拟和研究的平台。

本文将探讨在 SUMO 中实现的几种自适应交通信号控制策略,包括深度Q学习(DQN)、深度确定性策略梯度(DDPG)、韦氏算法、最大压力算法和自组织交通灯算法。

深度Q学习(DQN)

DQN 是一种基于 Q 学习的深度强化学习算法。通过使用深度神经网络来表示 Q 函数,DQN 能够处理高维度、连续的状态空间。

在交通信号控制中,每个交叉口可以被视为一个智能体,每个智

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值