一步一步解析:如何为C、C#和Matlab语言实现高效可靠的Gilbert-Johnson-Keerthi (GJK)算法

58 篇文章 107 订阅 ¥49.90 ¥99.00
本文详细解析了如何在C、C#和Matlab中实现高效可靠的Gilbert-Johnson-Keerthi (GJK)算法,用于判断两个凸多面体是否相交。介绍了GJK算法的基本流程、支持映射概念,以及在不同语言的实现细节和函数实现。
摘要由CSDN通过智能技术生成

一步一步解析:如何为C、C#和Matlab语言实现高效可靠的Gilbert-Johnson-Keerthi (GJK)算法

Gilbert-Johnson-Keerthi (GJK)算法是一种实用且高效的算法,主要应用在计算机图形学和机器人学中,以判断两个凸多面体是否相交。这个算法由Elmer Gilbert、Daniel Johnson和Srinivasan Keerthi于1988年提出。由于它的高效性和可靠性,GJK算法在实时物理模拟、碰撞检测和避障算法等多种领域中都有广泛应用。

本文旨在详细解析如何在 C、C# 和 Matlab 语言中实现这一算法,既适用于初学者,也适用于希望深入了解这一算法的研究者和开发者。本文中的代码都经过精心调试和优化,以确保准确性和效率。请跟随我一步步学习和理解GJK算法的实现过程。

实战项目下载

1. GJK算法简介

在了解如何实现GJK算法之前,我们首先需要理解GJK算法的基本概念和工作原理。

GJK算法是一个迭代过程,基于几何概念——“支持映射”。对于两个凸形状A和B,我们可以定义一个Minkowski差集 C = A - B。若A和B相交&

Gilbert-Johnson-Keerthi算法GJK算法)是一种用于计算凸多边形之间的最小距离和碰撞检测的算法。该算法由Daniel Gilbert、Daniel Johnson和Sanjiv Keerthi于1988年提出,是一种快速且有效的算法GJK算法的基本思想是通过迭代逼近来计算最小距离。算法的输入为两个凸多边形的顶点集合或凸多面体的点集合,并通过迭代的方式逼近最小距离,直到达到精度要求。 算法的步骤如下: 1. 初始化:选择一个起始向量和初始单纯形,该初始单纯形需要包含原始凸多边形。单纯形可以是一个点、线段或三角形。 2. 判断最近点:通过计算凸多边形在起始向量方向上的最近点来更新单纯形。 3. 判断包含关系:判断原始凸多边形是否被新的单纯形包含,如果是则表示两个凸多边形相交;如果不是,则返回到步骤2。 4. 计算最小距离:利用最近点计算两个凸多边形之间的最小距离。 GJK算法通过不断缩小搜索范围,快速地找到凸多边形之间的最小距离。相比于其他碰撞检测算法GJK算法的计算量较小,并且不需要昂贵的矩阵运算。 GJK算法在虚拟现实、游戏开发和机器人技术等领域有着广泛的应用。它能够有效地判断物体是否相交,从而实现碰撞检测和避障等功能。同时,GJK算法也可以用于优化物理引擎中的碰撞检测过程,提高运行效率。 综上所述,Gilbert-Johnson-Keerthi算法是一种用于计算凸多边形间最小距离和碰撞检测的快速有效算法,可以广泛应用于虚拟现实、游戏开发和机器人技术等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值