一步一步解析:如何为C、C#和Matlab语言实现高效可靠的Gilbert-Johnson-Keerthi (GJK)算法
Gilbert-Johnson-Keerthi (GJK)算法是一种实用且高效的算法,主要应用在计算机图形学和机器人学中,以判断两个凸多面体是否相交。这个算法由Elmer Gilbert、Daniel Johnson和Srinivasan Keerthi于1988年提出。由于它的高效性和可靠性,GJK算法在实时物理模拟、碰撞检测和避障算法等多种领域中都有广泛应用。
本文旨在详细解析如何在 C、C# 和 Matlab 语言中实现这一算法,既适用于初学者,也适用于希望深入了解这一算法的研究者和开发者。本文中的代码都经过精心调试和优化,以确保准确性和效率。请跟随我一步步学习和理解GJK算法的实现过程。
1. GJK算法简介
在了解如何实现GJK算法之前,我们首先需要理解GJK算法的基本概念和工作原理。
GJK算法是一个迭代过程,基于几何概念——“支持映射”。对于两个凸形状A和B,我们可以定义一个Minkowski差集 C = A - B。若A和B相交&