以llama.cpp工具为例,介绍模型量化并在本地部署的详细步骤。这里使用 Meta最新开源的 Llama3-8B 模型。
1 环境
- 系统应有
make
(MacOS/Linux自带)或cmake
(Windows需自行安装)编译工具 - Python 3.10以上编译和运行该工具
2 克隆和编译llama.cpp
拉取 llama.cpp 仓库最新代码
git clone https://github.com/ggerganov/llama.cpp.git
对llama.cpp项目进行编译,生成./main
(用于推理)和./quantize
(用于量化)二进制文件。
make
Windows/Linux用户如需启用GPU推理,则推荐与BLAS(或cuBLAS如果有GPU)一起编译,可以提高prompt处理速度。以下是和cuBLAS
一起编译的命令,适用于NVIDIA相关GPU。参考:llama.cpp#blas-build
make LLAMA_CUBLAS=1
macOS用户无需额外操作,llama.cpp已对ARM NEON做优化,并且已自动启用BLAS。M系列芯片推荐使用Metal启用GPU推理,显著提升速度。只需将编译命令改为:LLAMA_METAL=1 make
,参考llama.cpp#metal-build
LLAMA_METAL=1 make
3 生成量化版本模型
目前llama.cpp
已支持.pth
文件以及huggingface格式.bin
的转换。将完整模型权重转换为GGML的FP16格式,生成文件路径为Meta-Llama-3-8B-hf/ggml-model-f32.gguf
。进一步对FP32模型进行4-bit
量化,生成量化模型文件路径为Meta-Llama-3-8B-hf/ggml-model-q4_0.gguf
python convert.py Meta-Llama-3-8B-hf/ --vocab-type bpe
./quantize ./Meta-Llama-3-8B-hf/ggml-model-f16.gguf ./Meta-Llama-3-8B-hf/ggml-model-q4_0.gguf q4_0
- 可以-h 查看脚本的一些超参数
4 加载并启动模型
4.1 CPU 推理
运行./main二进制文件,-m命令指定 Q4量化模型(也可加载ggml-FP16的模型)。
# run the inference 推理
./main -m ./Meta-Llama-3-8B-hf/ggml-model-q4_0.gguf -n 128
./main -m ./Meta-Llama-3-8B-hf/ggml-model-f16.gguf -n 128
#以交互式对话
./main -m ./Meta-Llama-3-8B-hf/ggml-model-q4_0.gguf --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3
#chat with bob
./main -m ./Meta-Llama-3-8B-hf/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
-
如果想用GPU加速,放在GPU上,需要更换编译 llama.cpp 的方式
GPU推理:通过Metal编译则只需在./main中指定-ngl 1;cuBLAS编译需要指定offload层数,例如-ngl 40表示offload 40层模型参数到GPU
在支持 Metal 的情况下,可以使用 --gpu-layers|-ngl 命令行参数启用 GPU 推理。任何大于 0 的值都会将计算卸载到 GPU -
比较重要的参数:
- -ins 启动类ChatGPT的对话交流模式
- -f 指定prompt模板,alpaca模型请加载prompts/alpaca.txt 指令模板
- -c 控制上下文的长度,值越大越能参考更长的对话历史(默认:512)
- -n 控制回复生成的最大长度(默认:128)
- –repeat_penalty 控制生成回复中对重复文本的惩罚力度
- –temp 温度系数,值越低回复的随机性越小,反之越大
- –top_p, top_k 控制解码采样的相关参数
- -b 控制batch size(默认:512)
- -t 控制线程数量(默认:8),可适当增加
5 API 方式调用, 架设server
llama.cpp
还提供架设server
的功能,用于API调用、架设简易demo
等用途。
运行以下命令启动server
,二进制文件./server
在llama.cpp
根目录,服务默认监听127.0.0.1:8080
。这里指定模型路径、上下文窗口大小。如果需要使用GPU解码,也可指定-ngl
参数。
./server -m ./Meta-Llama-3-8B-hf/ggml-model-q4_0.gguf -c 4096 -ngl 999
服务启动后,即可通过多种方式进行调用,例如利用curl命令。以下是一个示例脚本(同时存放在scripts/llamacpp/server_curl_example.sh
),将Alpaca-2的模板进行包装并利用curl命令进行API访问。
# server_curl_example.sh
SYSTEM_PROMPT='You are a helpful assistant. 你是一个乐于助人的助手。'
# SYSTEM_PROMPT='You are a helpful assistant. 你是一个乐于助人的助手。请你提供专业、有逻辑、内容真实、有价值的详细回复。' # Try this one, if you prefer longer response.
INSTRUCTION=$1
ALL_PROMPT="[INST] <<SYS>>\n$SYSTEM_PROMPT\n<</SYS>>\n\n$INSTRUCTION [/INST]"
CURL_DATA="{\"prompt\": \"$ALL_PROMPT\",\"n_predict\": 128}"
curl --request POST \
--url http://localhost:8080/completion \
--header "Content-Type: application/json" \
--data "$CURL_DATA"
给出一个示例指令。
bash server_curl_example.sh '请列举5条文明乘车的建议'
稍后返回响应结果。
{
"content": " 以下是五个文明乘车的建议:1)注意礼貌待人,不要大声喧哗或使用不雅用语;2)保持车厢整洁卫生,丢弃垃圾时要及时处理;3)不影响他人休息和正常工作时间,避免在车厢内做剧烈运动、吃零食等有异味的行为;4)遵守乘车纪律,尊重公共交通工具的规则和制度;5)若遇到突发状况或紧急情况,请保持冷静并配合相关部门的工作。这些建议旨在提高公民道德水平和社会文明程度,共同营造一个和谐、舒适的乘坐环境。",
"generation_settings":
{
"frequency_penalty": 0.0,
"ignore_eos": false,
"logit_bias": [],
"mirostat": 0,
"mirostat_eta": 0.10000000149011612,
"mirostat_tau": 5.0,
"model": "zh-alpaca2-models/7b/ggml-model-q6_k.gguf",
"n_ctx": 4096,
"n_keep": 0,
"n_predict": 128,
"n_probs": 0,
"penalize_nl": true,
"presence_penalty": 0.0,
"repeat_last_n": 64,
"repeat_penalty": 1.100000023841858,
"seed": 4294967295,
"stop": [],
"stream": false,
"temp": 0.800000011920929,
"tfs_z": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"typical_p": 1.0
},
"model": "zh-alpaca2-models/7b/ggml-model-q6_k.gguf",
"prompt": " [INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n请列举5条文明乘车的建议 [/INST]",
"stop": true,
"stopped_eos": true,
"stopped_limit": false,
"stopped_word": false,
"stopping_word": "",
"timings":
{
"predicted_ms": 3386.748,
"predicted_n": 120,
"predicted_per_second": 35.432219934875576,
"predicted_per_token_ms": 28.2229,
"prompt_ms": 0.0,
"prompt_n": 120,
"prompt_per_second": null,
"prompt_per_token_ms": 0.0
},
"tokens_cached": 162,
"tokens_evaluated": 43,
"tokens_predicted": 120,
"truncated": false
}