介绍llama.cpp
本节主要介绍什么是llama.cpp,以及llama.cpp、llama、ollama的区别。同时说明一下GGUF这种模型文件格式。
什么是llama.cpp
llama.cpp是一个由Georgi Gerganov开发的高性能C++库,主要目标是在各种硬件上(本地和云端)以最少的设置和最先进的性能实现大型语言模型推理。
主要特点:
-
纯C/C++实现,没有任何依赖
-
对Apple Silicon(如M1/M2/M3芯片)提供一流支持 - 通过ARM NEON、Accelerate和Metal框架优化
-
支持x86架构的AVX、AVX2、AVX512和AMX指令集
-
支持1.5位、2位、3位、4位、5位、6位和8位整数量化,实现更快的推理和更低的内存使用
-
为NVIDIA GPU提供自定义CUDA内核(通过HIP支持AMD GPU,通过MUSA支持摩尔线程MTT GPU)
-
支持Vulkan和SYCL后端
-
CPU+GPU混合推理,可部分加速大于总VRAM容量的模型
llama、llama.cpp、ollama的区别
是不是经常听到llama、llama.cpp、ollama这三个名字,看起来都包括lalama,但实际上它们是不同的概念:
-
LLaMA:
-
LLaMA(Large Language Model Meta AI)是由Meta(Facebook)开发的大型语言模型系列
-
它是一组开源的基础语言模型,包括不同参数规模的版本(如LLaMA、LLaMA 2、LLaMA 3等)
-
LLaMA是模型本身,即训练好的神经网络权重和架构文件,有不同大小的模型,如3B、7B、13B、65B、70B、130B等
-
-
llama.cpp:
-
llama.cpp是一个C++库,用于在CPU上高效运行LLaMA模型
-
它是由Georgi Gerganov开发的,专注于优化LLaMA模型在消费级硬件上的推理性能
-
主要特点是内存效率高、支持量化(如4-bit、5-bit、8-bit量化)以减少内存需求
-
它是运行模型的推理引擎
-
-
Ollama:
-
Ollama是一个应用程序,让用户能够轻松下载、运行和使用各种大型语言模型
-
它在底层使用llama.cpp作为推理引擎
-
Ollama提供了友好的命令行界面和API,简化了模型的管理和使用
-
它相当于是llama.cpp的上层封装,增加了模型管理、会话管理等功能
-
所以说,LLaMA是模型本身("大脑"),llama.cpp是高效运行这些模型的引擎("引擎"),Ollama是一个用户友好的应用程序,使用llama.cpp作为引擎,让普通用户能够轻松使用这些模型("应用")
GGUF
我们常听说一下模型文件格式,GGUF就是其中一种专为 llama.cpp 设计的二进制格式,取代早期的 GGML。 GGUF(GPT-Generated Unified Format)是一种用于存储模型以便使用GGML和基于GGML的执行器进行推理的文件格式。,具有以下优势:
-
高效存储与加载:通过紧凑编码和内存映射技术加速模型载入47。
-
自包含性:文件内包含模型架构、超参数等完整信息,无需额外依赖7。
-
可扩展性:支持在不破坏兼容性的情况下新增元数据 下图是一个文件格式介绍:
Mac M1上安装llama.cpp做模型推理
本节介绍如何在Mac M1上安装llama.cpp,并使用模型进行推理。
设备:Mac Book Air(M1芯片,8G内存)
系统:macOS 15.0
模型:llama3.2-3B-Instruct
安装
Mac设备上安装有两种方式,下载源代码编译或者通过brew安装。 我们直接用brew安装。
brew install llama.cpp
下载模型
https://huggingface.co/models?library=gguf&sort=trending
https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/blob/main/Llama-3.2-3B-Instruct-Q8_0.gguf
运行推理
llama-cli -m Llama-3.2-3B-Instruct-Q8_0.gguf
运行成功后,可以看到一些推理参数。比如对Apple的图形计算Metal的支持、对ARM 上NEON优化的支持等。
在命令行直接对话:
M1芯片的Mac上,llama.cpp的推理速度非常快,基本秒出结果。
Linux下安装llama.cpp并使用模型进行推理
本节介绍如何在Linux下安装llama.cpp,并使用模型进行推理。
设备:Linux服务器(阿里云服务器:Intel CPU,2G内存)
系统:Ubuntu 22.04
模型:llama3.2-3B-Instruct
安装
-
下载编译
git clone https://github.com/ggerganov/llama.cpp.git
-
安装cmake 安装cmake
sudo apt install cmake
-
编译
cmake -B build
cmake --build build --config Release
运行推理
-
下载模型文件
同样使用前面下载的模型文件Llama-3.2-3B-Instruct-Q8_0.gguf。
-
运行推理
../llama.cpp/build/bin/llama-cli -m Llama-3.2-3B-Instruct-Q8_0.gguf
阿里云服务器是Intel CPU,所以需要使用CPU进行推理。配置比较低,所以推理速度比较慢,不可用。服务端的话还是要购买GPU服务器或者直接购买API服务做推理。
总结
-
由于llama.cpp是纯C/C++实现的,能够跨平台部署大模型推理。同时针对不同的硬件做了优化,所以推理速度非常快,尤其是Apple M1芯片,完全超出我的预期。我平时用的多的Ollama就是基于这个库的封装,对使用模型和应用开发更加友好。如果不做模型量化转换的话,用Ollama做本地模型部署就可以了。
-
小模型部署在端侧的部署还是很有意义的,比如在手机上部署一个llama3.2-3B-Instruct模型,可以实现非常快的推理速度。未来模型同时在端侧和云端部署,端侧模型推理速度更快,云端模型更强大,可以实现非常多的应用场景。
参考资料
-
https://github.com/ggml-org/llama.cpp
-
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
-
https://github.com/ggml-org/llama.cpp/blob/master/docs/install.md
-
https://juejin.cn/post/7332652230711509055
-
https://agi-sphere.com/install-llama-mac
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓