Tensorflow 张量 tensor

在tensorflow程序中,所有的数据都通过张量(tensor)的形式来表示。从功能的角度上看,张量可以被简单理解为多维数组。其中零阶张量表示标量(scalar),也就是一个数;一阶张量为向量(vector),也就是一个一维数组;第n阶张量可以理解为一个n维数组。但张量在Tensorflow中的实现并不是直接采用数组的形式,他只是对Temsorflow中运算结果的引用。在张量中并没有真正的保存数字,他保存的是如何得到这些数字的计算过程,还是以向量加法为例,当运行如下代码时,并不会得到加法的结果,而会得到对结果的一个引用。

从上面的代码可以看出Tensorflow中的张量和NumPy中的数组不同,Tensorflow计算的结果不是一个具体数字,而是一个张量的结构,,一个张量中主要保存了三个属性:名字(name)、维度(shape)和类型(type)。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值