TensorFlow(1) 张量的使用

本文介绍了TensorFlow中的基本概念——张量,包括其类型和作用。阐述了张量如何构建计算图,并通过Session执行计算。此外,还展示了如何使用placeholder创建变量输入,以及建立一个简单的两层神经网络,模拟未训练前参数的随机初始化过程。
摘要由CSDN通过智能技术生成

TensorFlow的张量:简单来说就是标量,向量,矩阵以及维度更高的矩阵

import tensorflow as tf
#定义常量
ts_c = tf.constant(2, name='ts_c')
#定义变量
ts_x = tf.Variable(ts_c+5, name='ts_x')
#一维张量
ts_X = tf.Variable([0.4,0.2,0.4])
#二维张量
ts_X = tf.Variable([[0.4,0.2,0.4]]) #shape(1,3)
W = tf.Variable([[-0.5, -0.2],
                 [-0.3, 0.4],
                 [-0.5, 0.2]]) #shape(3,2)

张量构成了“计算图”,而Session(会话)则是构建“计算图”与硬件设备的桥梁,通过Session能够执行计算图

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
sess.run(ts_c)
sess.run(ts_x)
#另一种执行计算图的方法eval()
#ts_x.eavl()
sess.close()

#使用with来控制session的打开与关闭,可以省去程序出错而session未关闭的问题
a = tf.constant(2, name='a')
x = tf.Variable(a+5, name='x')
with tf.Session() as sess:
    init = tf.global_variables_in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值