TensorFlow的张量:简单来说就是标量,向量,矩阵以及维度更高的矩阵
import tensorflow as tf
#定义常量
ts_c = tf.constant(2, name='ts_c')
#定义变量
ts_x = tf.Variable(ts_c+5, name='ts_x')
#一维张量
ts_X = tf.Variable([0.4,0.2,0.4])
#二维张量
ts_X = tf.Variable([[0.4,0.2,0.4]]) #shape(1,3)
W = tf.Variable([[-0.5, -0.2],
[-0.3, 0.4],
[-0.5, 0.2]]) #shape(3,2)
张量构成了“计算图”,而Session(会话)则是构建“计算图”与硬件设备的桥梁,通过Session能够执行计算图
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
sess.run(ts_c)
sess.run(ts_x)
#另一种执行计算图的方法eval()
#ts_x.eavl()
sess.close()
#使用with来控制session的打开与关闭,可以省去程序出错而session未关闭的问题
a = tf.constant(2, name='a')
x = tf.Variable(a+5, name='x')
with tf.Session() as sess:
init = tf.global_variables_in