优达(Udacity)_误差原因

1.误差原因

偏差:因为模型无法表达基本数据的复杂度——模型过度简化造成的-欠拟合

方差:用于测试预测结果对任意给定样本数据的变化,产生原因为:模型对训练它的有效数据过度敏感——过拟合,无法泛化模型

可以通过训练更多的数据降低方差,或者降低模型的复杂度。

4.

from sklearn.model_selection import learning_curve # sklearn 0.18

文档中一个合理的实现是:

 learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)

这里estimator是我们正在用来预测的模型,例如它可以是GaussianNB()Xy是特征和目标。cv是交叉验证生成器,例如KFold(),'n_jobs'是平行运算的参数,train_sizes是多少数量的训练数据用来生成曲线。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值