推荐系统之NFM

前言

CTR预测任务中, 高阶特征和低阶特征的学习都非常的重要。 推荐模型我们也学习了很多,基本上是从最简单的线性模型(LR), 到考虑低阶特征交叉的FM, 到考虑高度交叉的神经网络,再到两者都考虑的W&D组合模型。 其实这些模型又存在着自己的问题,也是后面模型不断需要进行改进的原理,主要有下面几点:

简单的线性模型虽然简单,同样这样是它的不足,就是限制了模型的表达能力,随着数据的大且复杂,这种模型并不能充分挖掘数据中的隐含信息,且忽略了特征间的交互,如果想交互,需要复杂的特征工程。
FM模型考虑了特征的二阶交叉,但是这种交叉仅停留在了二阶层次,虽然说能够进行高阶,但是计算量和复杂性一下子随着阶数的增加一下子就上来了。所以二阶是最常见的情况,会忽略高阶特征交叉的信息
DNN,适合天然的高阶交叉信息的学习,但是低阶的交叉会忽略掉,并且不能够实时的进行更新参数,而且记忆能力较弱。
W&D模型进行了一个伟大的尝试,把简单的LR模型和DNN模型进行了组合, 使得模型既能够学习高阶组合特征,又能够学习低阶的特征模式,但是W&D的wide部分是用了LR模型, 这一块依然是需要一些经验性的特征工程的,且Wide部分和Deep部分需要两种不同的输入模式, 这个在具体实际应用中需要很强的业务经验。
所以相应的算法也就应运而生,关于FNN、DeepFM前面都已经讲解过了,今天讲一下NFM,希望大家千万不要混淆了,hhh。

一、NFM模型的原理和论文细节

NFM(Neural Factorization Machines)是2017年由新加坡国立大学的何向南教授等人在SIGIR会议上提出的一个模型。 在介绍DeepFM的时候, 作者就首先分析了一下FM存在的问题,没法考虑高阶特征交互的问题, 这个在模拟复杂内在结构和规律性的真实数据时,FM的能力会受到限制,所以DeepFM的作者才想到了用FM和DNN网络进行一种并联的方式, 两者接收同样的输入, 但是各自学习不同的特征(一个负责低阶交互,一个负责高阶交互), 最后再把学习到的结果合并得到最终的输出,并通过实验也证明了这种策略的有效性。

虽然FM已经是公认的是稀疏数据中进行预测最有效的方法之一,但是真实的数据往往是非线性的。FM虽然能够比较好的处理稀疏数据, 也能学习稀疏数据间的二阶交互, 但说白了,这个还是个线性模型, 且交互仅仅限于二阶交互。

所以,作者这里的想法是利用神经网络的非线性和强表达能力来改进一下FM模型,得到一个增强版的FM模型,所以还是 老套路就是将这两个模型进行组合一下。毕竟FM和DNN在稀疏数据的优势非常明显且正好又互补, 且W&

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是基于PyTorch实现的NFM推荐算法代码,供参考: ``` import torch import torch.nn as nn import torch.nn.functional as F class NFM(nn.Module): def __init__(self, feature_dim, embedding_dim, hidden_dim, output_dim, dropout_prob): super().__init__() self.feature_dim = feature_dim self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.dropout_prob = dropout_prob self.embedding = nn.Embedding(feature_dim, embedding_dim) self.linear1 = nn.Linear(embedding_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, output_dim) self.linear3 = nn.Linear(embedding_dim, output_dim) self.dropout = nn.Dropout(dropout_prob) def forward(self, x): # Embedding layer x_emb = self.embedding(x) # Bi-Interaction layer sum_square = torch.sum(x_emb, dim=1) ** 2 square_sum = torch.sum(x_emb ** 2, dim=1) bi_interaction = 0.5 * (sum_square - square_sum) # MLP layer mlp_output = F.relu(self.linear1(self.dropout(bi_interaction))) mlp_output = self.linear2(self.dropout(mlp_output)) # Output layer output = self.linear3(x_emb.mean(dim=1)) + mlp_output return output ``` 其中,`feature_dim`为特征维度,`embedding_dim`为嵌入维度,`hidden_dim`为隐层维度,`output_dim`为输出维度,`dropout_prob`为dropout概率。 在模型的前向传播过程中,首先通过`nn.Embedding`层将输入的离散特征转化为嵌入向量,然后通过Bi-Interaction Layer计算二阶交叉特征,再通过MLP Layer进行非线性变换,最后将MLP输出和原始嵌入向量的平均值相加得到最终输出。 使用时,可以像以下代码一样初始化并训练模型: ``` # 初始化模型 model = NFM(feature_dim, embedding_dim, hidden_dim, output_dim, dropout_prob) # 定义损失函数和优化器 criterion = nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for inputs, targets in dataloader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() ``` 其中,`feature_dim`、`embedding_dim`、`hidden_dim`、`output_dim`、`dropout_prob`、`learning_rate`、`num_epochs`等参数需要根据具体情况进行设置,`dataloader`是一个PyTorch的`DataLoader`对象,用于加载训练数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值