推荐算法之Embedding方法汇总

本文汇总了推荐系统中常用的Embedding方法,包括word2vec、DeepWalk、Node2vec和EGES。word2vec通过skip-gram模型学习词向量;DeepWalk利用随机游走采样学习节点向量;Node2vec在随机游走中引入参数控制同质性和结构性;EGES结合边信息增强图嵌入,解决推荐系统中冷启动问题。
摘要由CSDN通过智能技术生成

前言

推荐算法的效果离不开embedding的使用,embedding是推荐算法中很重要的一个组成部分,不过也是根据不同的业务需求和数据采取不同的embedding方式,在这里我也是稍微总结常用的几种embedding方法吧。

用一句话来总结一下embedding就是将稀疏矩阵向量,变成稠密矩阵向量。

1、word2vec和item2vec

word2vec这是一款很经典的embedding方法了,源自于nlp中。在nlp中CBOW( Continuous Bagof-Words)和 Skip-gram 语言模型的工具就是Word2vec。在这里我是用skip-gram来引出word2vec。

在一个语言数列中,Skip-gram的目的是推测当前单词可能的前后单词。我们设想一下滑动窗在训练数据时如下图所示(绿框中的词语是输入词,粉框则是可能的输出结果):

 不断地移动滑动窗口我们可以得到一批样本。在推荐系统中也就是我们的特征向量。在训练过程开始之前,我们预先处理我们正在训练模型的文本。在这一步中,我们确定一下词典的大小(我们称之为vocab_size,比如说10,000)以及哪些词被它包含在内。在训练阶段的开始,我们创建两个矩阵——Embedding矩阵和Context矩阵。这两个矩阵在我们的词汇表中嵌入了每个单词(所以vocab_size是他们的维度之一)。第二个维度是我们希望每次嵌入的长度,即embedding的长度。

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值