学习论文"Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs"笔记

本文探讨了零样本学习在知识图谱中的应用,特别是在利用生成对抗网络(GAN)从文本描述生成关系向量的挑战。通过解决知识转移和文本噪声问题,提出了一种基于条件的生成对抗网络方法。实验改造了NELL和WIKI数据集,以验证模型在未见过的关系上的表现。
摘要由CSDN通过智能技术生成

1.文章的重点工作和创新点

1.Zero-shot:零样本学习,相关简介如下,
禁 止 套 娃

零样本学习常用演算法有:

2.GANhttps://zhuanlan.zhihu.com/p/42606381

3.idea:通过关系类别的文本描述生成关系类别的表征,让生成器来通过未知文本的描述得到未知文本的表征(以关系向量的形式表征)

2. Introduction

传统的large-scale知识图谱需要大量的结构数据(structured data),也就是节点,实体和边用头实体和尾实体及其对应的关系的三元组来表征。但是对于newly-added relations就GG了,因此考虑Zero-shot learning(ZSL)
零次学习。作者概括为:新的语义特征类别(semantic features of new classes)可以直接从文本描述(textual descriptions)获得。所以作者希望利用unseen relations的文本描述直接生成relation embeddings。这一过程面临两个挑战:1.需要解决如何将文本语义空间(text semantic space)knowledge transfer到知识图语义空间(knowledge graph semantic space)中,从而实现这种无监督的zero-shot目的。2.对于文本描述中的噪声问题对分辨目标关系的干扰。对于挑战1,作者用将文本描述喂给GAN来生成虚假关系embeddings,作为我们"inter-class diversity"的未知关系(unseen relations);对于挑战2,作者利用词嵌入的词袋模型,计算TF-IDF特征降低less relevant words的weight。

3. Zero-Shot Learning Setting

3.1 Zero-shot Setting

According to the zero-shot setting, there are two different relation sets R s = { r s } R_s=\{ r_s\} Rs={ rs}也是训练集, R u = { r u } R_u=\{ r_u\} Ru={ ru},也是测试集:

  • R s ⋂ R u = ϕ R_s\bigcap R_u=\phi RsRu=ϕ,即seen关系集和unseen关系集不重叠(seen classes and unseen classes)

定义 background KG G \mathcal G G: G = { ( e 1 , r s , e 2 ) ∣ e 1 ∈ E , e 2 ∈ E } \mathcal G=\{(e_1,r_s,e_2)|e_1\in E,e_2 \in E\} G={ (e1,rs,e2)e1E,e2<

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值