zero-shot:基于对抗生成网络的零样本学习

视觉空间与语义空间相互生成并利用循环一致损失
Generative Dual Adversarial Network for Generalized Zero-shot Learning

关键点:
  1. 视觉 ——》语义——》视觉;语义——》视觉——》语义
  2. 使用cycleLoss衡量视觉——视觉;语义——语义的损失
  3. 使用Discriminator进行real/fake判别
  4. 在测试时,首先生成新的unseen类别特征,然后将生成的特征与seen特征融合,最后进行分类器的训练

Generative Model with Semantic Embedding and Integrated Classifier for Generalized Zero-Shot Learning

  1. 视觉——》语义——》视觉的映射
  2. 基于度量学习的Integrated Classifier模块,保证在测试新类时,无需生成大量的fake样本

CANZSL: Cycle-Consistent Adversarial Networks for Zero-Shot Learning from Natural Language

  1. 视觉——》语义——》视觉的映射
  2. 使用cycle consistency loss计算损失
  3. 语义表示使用文本,不是明确的semantic vector

Feature Generating Networks for Zero-Shot Learnin

比较靠前的使用对抗生成网络解决zero-shot,只有语义——》视觉。没有花狸狐哨的各种损失,最后测试阶段,也是通过生成unseen样本来解决。

Self-supervised Domain aware Generative Network for Generalized Zero-shot Learning

出发点:
使用自监督,产生attribute对应的anchor参照,配合生成网络将source data与target data区分开来(Domain aware)

自监督来自于所有类别共享的attribute分类权重,以此作为anchor调整生成特征,并配合两个损失完成训练。但是attribute权重是如何得到的???

关键点:

  1. domain aware 生成网络区别对待source data与target data
  2. 使用自监督产生anchor参照,重塑feature,使source feature与target feature分离
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值