柯尔莫哥洛夫微分方程

引理1: 设齐次马尔可夫过程满足正则性条件,则对于任意固定的 i , j ∈ I , p i j ( t ) i,j\in I,p_{ij}(t) i,jI,pij(t) t t t的一致连续函数。

证明:设 h > 0 h>0 h>0,则有 p i j ( t + h ) − p i j ( t ) = ∑ r ∈ I p i r ( h ) p r j ( t ) − p i j ( t ) = p i i ( h ) p i j ( t ) − p i j ( t ) + ∑ r ≠ i p i r ( h ) p r j ( t ) = − [ 1 − p i i ( h ) ] p i j ( t ) + ∑ r ≠ i p i r ( h ) p r j ( t ) , \begin{aligned}p_{ij}(t+h)-p_{ij}(t)&=\sum\limits_{r \in I}p_{ir}(h)p_{rj}(t)-p_{ij}(t)\\&=p_{ii}(h)p_{ij}(t)-p_{ij}(t)+\sum\limits_{r \ne i}p_{ir}(h)p_{rj}(t)\\&=-[1-p_{ii}(h)]p_{ij}(t)+\sum\limits_{r \ne i}p_{ir}(h)p_{rj}(t),\end{aligned} pij(t+h)pij(t)=rIpir(h)prj(t)pij(t)=pii(h)pij(t)pij(t)+r=ipir(h)prj(t)=[1pii(h)]pij(t)+r=ipir(h)prj(t),故有 p i j ( t + h ) − p i j ( t ) ≥ − [ 1 − p i i ( h ) ] p i j ( t ) ≥ − [ 1 − p i i ( h ) ] p_{ij}(t+h)-p_{ij}(t)\ge-[1-p_{ii}(h)]p_{ij}(t)\ge-[1-p_{ii}(h)] pij(t+h)pij(t)[1pii(h)]pij(t)[1pii(h)] p i j ( t + h ) − p i j ( t ) ≤ ∑ r ≠ i p i r ( h ) p r j ( t ) ≤ ∑ r ≠ i p i r ( h ) = 1 − p i i ( h ) , p_{ij}(t+h)-p_{ij}(t)\le \sum\limits_{r \ne i}p_{ir}(h)p_{rj}(t)\le \sum_{r \ne i}p_{ir}(h)=1-p_{ii}(h), pij(t+h)pij(t)r=ipir(h)prj(t)r=ipir(h)=1pii(h),因此 ∣ p i j ( t + h ) − p i j ( t ) ∣ ≤ 1 − p i i ( h ) . |p_{ij}(t+h)-p_{ij}(t)|\le 1-p_{ii}(h). pij(t+h)pij(t)1pii(h).对于 h < 0 h<0 h<0,同样有 p i j ( t ) − p i j ( t + h ) = ∑ r ∈ I p i r ( − h ) p r j ( t + h ) − p i j ( t + h ) = p i i ( − h ) p i j ( t + h ) − p i j ( t + h ) + ∑ r ≠ i p i r ( − h ) p r j ( t + h ) = − [ 1 − p i i ( − h ) ] p i j ( t + h ) + ∑ r ≠ i p i r ( − h ) p r j ( t + h ) \begin{aligned}p_{ij}(t)-p_{ij}(t+h)&=\sum\limits_{r \in I}p_{ir}(-h)p_{rj}(t+h)-p_{ij}(t+h)\\&=p_{ii}(-h)p_{ij}(t+h)-p_{ij}(t+h)+\sum\limits_{r \ne i}p_{ir}(-h)p_{rj}(t+h)\\&=-[1-p_{ii}(-h)]p_{ij}(t+h)+\sum\limits_{r \ne i}p_{ir}(-h)p_{rj}(t+h)\end{aligned} pij(t)pij(t+h)=rIpir(h)prj(t+h)pij(t+h)=pii(h)pij(t+h)pij(t+h)+r=ipir(h)prj(t+h)=[1pii(h)]pij(t+h)+r=ipir(h)prj(t+h)故有 p i j ( t ) − p i j ( t + h ) ≥ − [ 1 − p i i ( − h ) ] p i j ( t + h ) ≥ − [ 1 − p i i ( − h ) ] p_{ij}(t)-p_{ij}(t+h)\ge -[1-p_{ii}(-h)]p_{ij}(t+h) \ge-[1-p_{ii}(-h)] pij(t)pij(t+h)[1pii(h)]pij(t+h)[1pii(h)] p i j ( t ) − p i j ( t + h ) ≤ ∑ r ≠ i p i r ( − h ) p r j ( t + h ) ≤ ∑ r ≠ i p i r ( − h ) = 1 − p r j ( − h ) \begin{aligned}p_{ij}(t)-p_{ij}(t+h) &\le \sum\limits_{r \ne i}p_{ir}(-h)p_{rj}(t+h)\\&\le \sum\limits_{r \ne i}p_{ir}(-h)=1-p_{rj}(-h)\end{aligned} pij(t)pij(t+h)r=ipir(h)prj(t+h)r=ipir(h)=1prj(h)因此, ∣ p i j ( t ) − p i j ( t + h ) ∣ ≤ 1 − p i i ( − h ) . |p_{ij}(t)-p_{ij}(t+h)|\le 1 - p_{ii}(-h). pij(t)pij(t+h)1pii(h).综上所述,一般地有 ∣ p i j ( t + h ) − p i j ( t ) ∣ < 1 − p i i ( ∣ h ∣ ) |p_{ij}(t+h)-p_{ij}(t)|<1-p_{ii}(|h|) pij(t+h)pij(t)<1pii(h)由正则性条件知 lim ⁡ h → 0 ∣ p i j ( t + h ) − p i j ( t ) ∣ = 0 , \lim\limits_{h\rightarrow 0}|p_{ij}(t+h)-p_{ij}(t)|=0, h0limpij(t+h)pij(t)=0, p i j ( t ) p_{ij}(t) pij(t)关于 t t t是一致连续的,证毕。

定理1: p i j ( t ) p_{ij}(t) pij(t)是齐次马尔可夫过程的转移概率,则下列极限存在:
(1) lim ⁡ Δ t → 0 1 − p i i ( Δ t ) Δ t = v i = q i i ≤ ∞ ; \lim\limits_{\Delta t\rightarrow0}\frac{1-p_{ii}(\Delta t)}{\Delta t}=v_i=q_{ii}\le \infty; Δt0limΔt1pii(Δt)=vi=qii;
(2) lim ⁡ Δ t → 0 p i j ( Δ t ) Δ t = q i j = ∞ , i ≠ j . \lim\limits_{\Delta t \rightarrow 0}\frac{p_{ij}(\Delta t)}{\Delta t}=q_{ij}=\infty,i\ne j . Δt0limΔtpij(Δt)=qij=,i=j.

q i j q_{ij} qij为齐次马尔可夫过程从状态 i i i到状态 j j j的转移速率或跳跃巧渡

推论1: 对有限状态的齐次马尔可夫过程, q i i = ∑ j ≠ i q i j < ∞ q_{ii}=\sum\limits_{j \ne i}q_{ij}< \infty qii=j=iqij<

证:因为有 ∑ j ∈ I p i j ( Δ t ) = 1 , \sum\limits_{j\in I}p_{ij}(\Delta t)=1, jIpij(Δt)=1, 1 − p i i ( Δ t ) = ∑ j ≠ i p i j ( Δ t ) . 1-p_{ii}(\Delta t)=\sum\limits_{j \ne i}p_{ij}(\Delta t). 1pii(Δt)=j=ipij(Δt).由于求和是在有限集中进行,故有 lim ⁡ Δ t → 0 1 − p i i ( Δ t ) Δ t = lim ⁡ Δ t → 0 ∑ j ≠ t p i j ( Δ t ) Δ t = ∑ j ≠ i q i j \lim\limits_{\Delta t \rightarrow 0}\frac{1-p_{ii}(\Delta t)}{\Delta t}=\lim\limits_{\Delta t \rightarrow 0}\sum\limits_{j \ne t}\frac{p_{ij}(\Delta t)}{\Delta t}=\sum\limits_{j \ne i}q_{ij} Δt0limΔt1pii(Δt)=Δt0limj=tΔtpij(Δt)=j=iqij q i i = ∑ j ≠ i q i j q_{ii}=\sum\limits_{j \ne i}q_{ij} qii=j=iqij证毕。
 对于状态空间无限的齐次马尔科夫过程,一般只有 q i i ≥ ∑ j ≠ i q i j . q_{ii}\ge \sum\limits_{j \ne i}q_{ij}. qiij=iqij.
 若连续时间齐次马尔可夫链是具有有限状态空间 I = { 0 , 1 , ⋯   , n } I=\{0,1,\cdots,n\} I={0,1,,n},则其转移速率可构成以下形式的矩阵 Q = ( − q 00 q 01 ⋯ q 0 n q 10 − q 11 ⋯ q 1 n ⋮ ⋮ ⋱ ⋮ q n 0 q n 1 ⋯ − q n n ) \boldsymbol{Q}=\left(\begin{array}{rrrr}-q_{00}&q_{01}&\cdots&q_{0n}\\q_{10}&-q_{11}&\cdots&q_{1n}\\\vdots&\vdots&\ddots&\vdots\\q_{n0}&q_{n1}&\cdots&-q_{nn}\end{array}\right) Q=q00q10qn0q01q11qn1q0nq1nqnn Q \boldsymbol{Q} Q矩阵的每一行元素之和为 0 0 0,对角线元素为负或 0 0 0,其余 i ≠ j i\ne j i=j时, q i j ≥ 0 q_{ij}\ge 0 qij0
 利用 Q \boldsymbol{Q} Q矩阵可以推出任意时间间隔 t t t的转移概率所满足的方程组,从而可以求解转移概率。
 由切普曼-柯尔莫哥洛夫方程有 p i j ( t + h ) = ∑ k ∈ I p i k ( h ) p k j ( t ) , p_{ij}(t+h)=\sum\limits_{k \in I}p_{ik}(h)p_{kj}(t), pij(t+h)=kIpik(h)pkj(t),或等价地 p i j ( t + h ) − p i j ( t ) = ∑ k ≠ i p i k ( h ) p k j ( t ) − [ 1 − p i i ( h ) ] p i j ( t ) p_{ij}(t+h)-p_{ij}(t)=\sum\limits_{k \ne i}p_{ik}(h)p_{kj}(t)-[1-p_{ii}(h)]p_{ij}(t) pij(t+h)pij(t)=k=ipik(h)pkj(t)[1pii(h)]pij(t)两边除以 h h h后令 h → 0 h\rightarrow0 h0,取极限,可得 lim ⁡ h → 0 p i j ( t + h ) − p i j ( t ) h = lim ⁡ h → 0 ∑ k ≠ i p i k ( h ) h p k j ( t ) − q i i p i j ( t ) \lim\limits_{h \rightarrow0}\frac{p_{ij}(t+h)-p_{ij}(t)}{h}=\lim\limits_{h \rightarrow 0}\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)-q_{ii}p_{ij}(t) h0limhpij(t+h)pij(t)=h0limk=ihpik(h)pkj(t)qiipij(t)上式的右边可交换极限与求和,于是得到下面结论。

定理2:(柯尔莫哥洛夫向后方程)假设 ∑ k ≠ i q i k = q i i \sum\limits_{k \ne i}q_{ik}=q_{ii} k=iqik=qii,则对一切 i , j i,j i,j t ≥ 0 t\ge 0 t0,有 p i j ′ ( t ) = ∑ k ≠ i q i k p k j ( t ) − q i i p i j ( t ) p^{\prime}_{ij}(t)=\sum\limits_{k \ne i}q_{ik}p_{kj}(t)-q_{ii}p_{ij}(t) pij(t)=k=iqikpkj(t)qiipij(t)

证明:对于任意固定的 N N N,有 lim ⁡ h → 0 inf ⁡ ∑ k ≠ i p i k ( h ) h p k j ( t ) ≥ lim ⁡ h → 0 inf ⁡ ∑ k ≠ i k < N p i k ( h ) h p k j ( t ) = ∑ k ≠ i k < N q i k p k j ( t ) , \lim\limits_{h \rightarrow 0}\inf \sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)\ge \lim\limits_{h \rightarrow 0}\inf \sum\limits_{k \ne i \atop k<N}\frac{p_{ik}(h)}{h}p_{kj}(t)=\sum\limits_{k \ne i \atop k<N}q_{ik}p_{kj}(t), h0liminfk=ihpik(h)pkj(t)h0liminfk<Nk=ihpik(h)pkj(t)=k<Nk=iqikpkj(t),因为上式对一切 N N N成立,可见 lim ⁡ h → 0 inf ⁡ ∑ k ≠ i p i k ( h ) h p k j ( t ) ≥ ∑ k ≠ i q i k p k j ( t ) \lim\limits_{h \rightarrow 0}\inf\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)\ge \sum\limits_{k \ne i}q_{ik}p_{kj}(t) h0liminfk=ihpik(h)pkj(t)k=iqikpkj(t)为了倒转不等式,注意对于 N > i N>i N>i,由于 p k j ( t ) ≤ 1 p_{kj}(t)\le 1 pkj(t)1,所以 lim ⁡ h → 0 sup ⁡ ∑ k ≠ i p i k ( h ) h p k j ( t ) ≤ lim ⁡ h → 0 sup ⁡ [ ∑ k ≠ i k < N p i k ( h ) h p k j ( t ) + ∑ k ≤ N p i k ( h ) h ] ≤ lim ⁡ h → 0 sup ⁡ [ ∑ k ≠ i k < N p i k ( h ) h p k j ( t ) + 1 − p i i ( h ) h − ∑ k ≠ i k < N p i k ( h ) h ] = ∑ k ≠ i k < N q i k p k j ( t ) + q i i − ∑ k ≠ i k < N q i k \begin{aligned}\lim\limits_{h\rightarrow 0}\sup\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)&\le \lim\limits_{h \rightarrow0}\sup[\sum\limits_{k \ne i \atop k<N}\frac{p_{ik}(h)}{h}p_{kj}(t)+\sum\limits_{k \le N}\frac{p_{ik}(h)}{h}]\\&\le \lim\limits_{h \rightarrow 0}\sup[\sum\limits_{k \ne i \atop k<N}\frac{p_{ik}(h)}{h}p_{kj}(t)+\frac{1-p_{ii}(h)}{h}-\sum\limits_{k\ne i \atop k <N}\frac{p_{ik}(h)}{h}]\\&=\sum\limits_{k \ne i \atop k <N}q_{ik}p_{kj}(t)+q_{ii}-\sum\limits_{k \ne i \atop k<N}q_{ik}\end{aligned} h0limsupk=ihpik(h)pkj(t)h0limsup[k<Nk=ihpik(h)pkj(t)+kNhpik(h)]h0limsup[k<Nk=ihpik(h)pkj(t)+h1pii(h)k<Nk=ihpik(h)]=k<Nk=iqikpkj(t)+qiik<Nk=iqik因为上述不等式对一切 N > i N>i N>i成立,令 N → ∞ N\rightarrow \infty N且由 ∑ k ≠ i q i k = q i i \sum\limits_{k \ne i}q_{ik}=q_{ii} k=iqik=qii,可以得到 lim ⁡ h → 0 sup ⁡ ∑ k ≠ i p i k ( h ) h p k j ( t ) ≤ ∑ k ≠ i q i k p k j ( t ) \lim\limits_{h \rightarrow 0}\sup\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)\le \sum\limits_{k \ne i}q_{ik}p_{kj}(t) h0limsupk=ihpik(h)pkj(t)k=iqikpkj(t)进一步可得 lim ⁡ h → 0 ∑ k ≠ i p j k ( h ) h p k j ( t ) = ∑ k ≠ i q i k p k j ( t ) \lim\limits_{h \rightarrow 0}\sum\limits_{k \ne i}\frac{p_{jk}(h)}{h}p_{kj}(t)=\sum\limits_{k \ne i}q_{ik}p_{kj}(t) h0limk=ihpjk(h)pkj(t)=k=iqikpkj(t)证毕。
  上定理中 p i j ( t ) p_{ij}(t) pij(t)满足的微分方程组称为柯尔莫哥洛夫向后方程或向后方程,是因为在计算时刻 t + h t+h t+h的状态的概率分布时对退后到时刻 h h h的状态取条件,即从 p i j ( t + h ) = ∑ k ∈ I P { X ( t + h ) = j ∣ X ( 0 ) = i , X ( h ) = k } ⋅ P { X ( h ) = k ∣ X ( 0 ) = i } = ∑ k ∈ I p k j ( t ) p i k ( h ) \begin{aligned}p_{ij}(t+h)&=\sum\limits_{k \in I}P\{X(t+h)=j|X(0)=i,X(h)=k\}\cdot P\{X(h)=k|X(0)=i\}\\&=\sum\limits_{k\in I}p_{kj}(t)p_{ik}(h)\end{aligned} pij(t+h)=kIP{X(t+h)=jX(0)=i,X(h)=k}P{X(h)=kX(0)=i}=kIpkj(t)pik(h)
  对时刻 t t t的状态取条件,可以导出另一组方程,称为柯尔莫哥洛夫向前方程,可得 p i j ( t + h ) = ∑ k ∈ I p i k ( t ) p k j ( h ) p_{ij}(t+h)=\sum\limits_{k \in I}p_{ik}(t)p_{kj}(h) pij(t+h)=kIpik(t)pkj(h) p i j ( t + h ) − p i j ( t ) = ∑ k ∈ I p i k ( t ) p k j ( h ) − p i j ( t ) = ∑ k ≠ j p i k ( t ) p k j ( h ) − [ 1 − p j j ( h ) ] p i j ( t ) \begin{aligned}p_{ij}(t+h)-p_{ij}(t)&=\sum\limits_{k \in I}p_{ik}(t)p_{kj}(h)-p_{ij}(t)\\&=\sum\limits_{k \ne j}p_{ik}(t)p_{kj}(h)-[1-p_{jj}(h)]p_{ij}(t)\end{aligned} pij(t+h)pij(t)=kIpik(t)pkj(h)pij(t)=k=jpik(t)pkj(h)[1pjj(h)]pij(t)所以 lim ⁡ h → 0 p i j ( t + h ) − p i j ( t ) h = lim ⁡ h → 0 { ∑ k ≠ j p i k ( t ) p k j ( h ) h − 1 − p j j ( h ) h p i j ( t ) } \lim\limits_{h \rightarrow 0}\frac{p_{ij}(t+h)-p_{ij}(t)}{h}=\lim\limits_{h \rightarrow 0}\left\{\sum\limits_{k \ne j}p_{ik}(t)\frac{p_{kj}(h)}{h}-\frac{1-p_{jj}(h)}{h}p_{ij}(t)\right\} h0limhpij(t+h)pij(t)=h0limk=jpik(t)hpkj(h)h1pjj(h)pij(t)

定理3:(柯尔莫哥洛夫前向方程)在适当的正则条件下,柯尔莫哥洛夫前向方程表示为 p i j ′ ( t ) = ∑ k ≠ j p i k ( t ) q k j − p i j ( t ) q j j p^{\prime}_{ij}(t)=\sum\limits_{k \ne j}p_{ik}(t)q_{kj}-p_{ij}(t)q_{jj} pij(t)=k=jpik(t)qkjpij(t)qjj初始条件为 { p i j ( 0 ) = 1 , i = j , p i j ( 0 ) = 0 , i ≠ j \left\{\begin{array}{ll}p_{ij}(0)=1, &i=j,\\p_{ij}(0)=0,&i\ne j\end{array}\right. {pij(0)=1,pij(0)=0,i=j,i=j

向后方程和向前方程可以写成矩阵形式: P ′ ( t ) = Q P ( t ) , P ′ ( t ) = P ( t ) Q , \begin{aligned}\boldsymbol{P}^{\prime}(t)&=\boldsymbol{QP}(t),\\\boldsymbol{P}^{\prime}(t)&=\boldsymbol{P}(t)\boldsymbol{Q},\end{aligned} P(t)P(t)=QP(t),=P(t)Q,其中矩阵 Q \boldsymbol{Q} Q Q = ( − q 00 q 01 q 02 ⋯ q 10 − q 11 q 12 ⋯ q 20 q 21 − q 22 ⋯ ⋯ ⋯ ⋯ ⋯ ) \boldsymbol{Q}=\left(\begin{array}{rrrr}-q_{00}&q_{01}&q_{02}&\cdots\\ q_{10}& -q_{11}&q_{12}&\cdots\\q_{20}&q_{21}&-q_{22}&\cdots\\\cdots&\cdots&\cdots&\cdots\end{array}\right) Q=q00q10q20q01q11q21q02q12q22矩阵 P ′ ( t ) \boldsymbol{P}^{\prime}(t) P(t)的元素为矩阵 P ( t ) \boldsymbol{P}(t) P(t)的元素的导数,而 P ( t ) = ( p 00 ( t ) p 01 ( t ) p 02 ( t ) ⋯ p 10 ( t ) p 11 ( t ) p 12 ( t ) ⋯ p 20 ( t ) p 21 ( t ) p 22 ( t ) ⋯ ⋯ ⋯ ⋯ ⋯ ) \boldsymbol{P}(t)=\left(\begin{array}{rrrr}p_{00}(t)&p_{01}(t)&p_{02}(t)&\cdots\\ p_{10}(t)&p_{11}(t)&p_{12}(t)&\cdots \\ p_{20}(t)&p_{21}(t)&p_{22}(t)&\cdots\\\cdots&\cdots&\cdots&\cdots\end{array}\right) P(t)=p00(t)p10(t)p20(t)p01(t)p11(t)p21(t)p02(t)p12(t)p22(t) Q \boldsymbol{Q} Q是一个有限维矩阵,则有 P ( t ) = e Q t = ∑ j = 0 ∞ ( Q t ) j j ! \boldsymbol{P}(t)=\mathrm{e}^{\boldsymbol{Q}t}=\sum\limits_{j=0}^{\infty}\frac{(\boldsymbol{Q}t)^j}{j!} P(t)=eQt=j=0j!(Qt)j

定理4: 齐次马尔可夫过程在 t t t时刻处于状态 j ∈ I j\in I jI的绝对概率 p j ( t ) p_{j}(t) pj(t)满足下列方程: p j ′ ( t ) = − p j ( t ) q j j + ∑ k ≠ j p k ( t ) q k j p^{\prime}_j(t)=-p_{j}(t)q_{jj}+\sum\limits_{k \ne j}p_k(t)q_{kj} pj(t)=pj(t)qjj+k=jpk(t)qkj

证:已知 p j ( t ) = ∑ i ∈ I p i p i j ( t ) p_j(t)=\sum\limits_{i \in I}p_ip_{ij}(t) pj(t)=iIpipij(t)将向前方程两边乘以 p i p_i pi,并对 i i i求和得 ∑ i ∈ I p i p i j ′ ( t ) = ∑ i ∈ I ( − p i p i j ( t ) q j j ) + ∑ i ∈ I ∑ k ≠ j p i p i k ( t ) q k j \sum\limits_{i\in I}p_ip_{ij}^{\prime}(t)=\sum\limits_{i\in I}(-p_ip_{ij}(t)q_{jj})+\sum\limits_{i \in I}\sum\limits_{k \ne j}p_ip_{ik}(t)q_{kj} iIpipij(t)=iI(pipij(t)qjj)+iIk=jpipik(t)qkj p j ′ ( t ) = − p j ( t ) q j j + ∑ k ≠ j p k ( t ) q k j p_j^{\prime}(t)=-p_j(t)q_{jj}+\sum\limits_{k \ne j}p_k(t)q_{kj} pj(t)=pj(t)qjj+k=jpk(t)qkj证毕。

定义1: p i j ( t ) p_{ij}(t) pij(t)为连续马尔可夫链的转移概率,若存在时刻 t 1 t_1 t1 t 2 t_2 t2使得 p i j ( t 1 ) > 0 , p j i ( t 2 ) > 0 , p_{ij}(t_1)>0,\quad p_{ji}(t_2)>0, pij(t1)>0,pji(t2)>0,则称状态 i i i j j j是互通的。若所有状态都是互通的,则称马尔可夫链为不可约的。

定理5: 设连续时间的马尔可夫链是不可约的,则有下列性质:
(1)若它是正常返的,则极限 lim ⁡ t → ∞ p i j ( t ) \lim\limits_{t \rightarrow \infty}p_{ij}(t) tlimpij(t)存在且等于 π j > 0 , j ∈ I \pi_j>0,j\in I πj>0,jI。这里 π j \pi_j πj是方程组 { π j q j j = ∑ k ≠ j π k q k j , ∑ j ∈ I π j = 1 \left\{\begin{aligned}\pi_jq_{jj}&=\sum\limits_{k \ne j}\pi_kq_{kj},\\\sum\limits_{j \in I}\pi_j&=1\end{aligned}\right. πjqjjjIπj=k=jπkqkj,=1的唯一非负解。此时称 { π j , j ∈ I } \{\pi_j,j\in I\} {πj,jI}是该过程的平稳分布,并且有 lim ⁡ t → ∞ p j ( t ) = π j \lim\limits_{t \rightarrow \infty}p_{j}(t)=\pi_j tlimpj(t)=πj(2)若它是零常返的或非常返的,则 lim ⁡ t → ∞ p i j ( t ) = lim ⁡ t → ∞ p j ( t ) = 0 , i , j ∈ I \lim\limits_{t\rightarrow \infty}p_{ij}(t)=\lim\limits_{t \rightarrow \infty} p_j(t)=0,\quad i,j \in I tlimpij(t)=tlimpj(t)=0,i,jI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值