引理1: 设齐次马尔可夫过程满足正则性条件,则对于任意固定的 i , j ∈ I , p i j ( t ) i,j\in I,p_{ij}(t) i,j∈I,pij(t)是 t t t的一致连续函数。
证明:设
h
>
0
h>0
h>0,则有
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
=
∑
r
∈
I
p
i
r
(
h
)
p
r
j
(
t
)
−
p
i
j
(
t
)
=
p
i
i
(
h
)
p
i
j
(
t
)
−
p
i
j
(
t
)
+
∑
r
≠
i
p
i
r
(
h
)
p
r
j
(
t
)
=
−
[
1
−
p
i
i
(
h
)
]
p
i
j
(
t
)
+
∑
r
≠
i
p
i
r
(
h
)
p
r
j
(
t
)
,
\begin{aligned}p_{ij}(t+h)-p_{ij}(t)&=\sum\limits_{r \in I}p_{ir}(h)p_{rj}(t)-p_{ij}(t)\\&=p_{ii}(h)p_{ij}(t)-p_{ij}(t)+\sum\limits_{r \ne i}p_{ir}(h)p_{rj}(t)\\&=-[1-p_{ii}(h)]p_{ij}(t)+\sum\limits_{r \ne i}p_{ir}(h)p_{rj}(t),\end{aligned}
pij(t+h)−pij(t)=r∈I∑pir(h)prj(t)−pij(t)=pii(h)pij(t)−pij(t)+r=i∑pir(h)prj(t)=−[1−pii(h)]pij(t)+r=i∑pir(h)prj(t),故有
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
≥
−
[
1
−
p
i
i
(
h
)
]
p
i
j
(
t
)
≥
−
[
1
−
p
i
i
(
h
)
]
p_{ij}(t+h)-p_{ij}(t)\ge-[1-p_{ii}(h)]p_{ij}(t)\ge-[1-p_{ii}(h)]
pij(t+h)−pij(t)≥−[1−pii(h)]pij(t)≥−[1−pii(h)]
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
≤
∑
r
≠
i
p
i
r
(
h
)
p
r
j
(
t
)
≤
∑
r
≠
i
p
i
r
(
h
)
=
1
−
p
i
i
(
h
)
,
p_{ij}(t+h)-p_{ij}(t)\le \sum\limits_{r \ne i}p_{ir}(h)p_{rj}(t)\le \sum_{r \ne i}p_{ir}(h)=1-p_{ii}(h),
pij(t+h)−pij(t)≤r=i∑pir(h)prj(t)≤r=i∑pir(h)=1−pii(h),因此
∣
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
∣
≤
1
−
p
i
i
(
h
)
.
|p_{ij}(t+h)-p_{ij}(t)|\le 1-p_{ii}(h).
∣pij(t+h)−pij(t)∣≤1−pii(h).对于
h
<
0
h<0
h<0,同样有
p
i
j
(
t
)
−
p
i
j
(
t
+
h
)
=
∑
r
∈
I
p
i
r
(
−
h
)
p
r
j
(
t
+
h
)
−
p
i
j
(
t
+
h
)
=
p
i
i
(
−
h
)
p
i
j
(
t
+
h
)
−
p
i
j
(
t
+
h
)
+
∑
r
≠
i
p
i
r
(
−
h
)
p
r
j
(
t
+
h
)
=
−
[
1
−
p
i
i
(
−
h
)
]
p
i
j
(
t
+
h
)
+
∑
r
≠
i
p
i
r
(
−
h
)
p
r
j
(
t
+
h
)
\begin{aligned}p_{ij}(t)-p_{ij}(t+h)&=\sum\limits_{r \in I}p_{ir}(-h)p_{rj}(t+h)-p_{ij}(t+h)\\&=p_{ii}(-h)p_{ij}(t+h)-p_{ij}(t+h)+\sum\limits_{r \ne i}p_{ir}(-h)p_{rj}(t+h)\\&=-[1-p_{ii}(-h)]p_{ij}(t+h)+\sum\limits_{r \ne i}p_{ir}(-h)p_{rj}(t+h)\end{aligned}
pij(t)−pij(t+h)=r∈I∑pir(−h)prj(t+h)−pij(t+h)=pii(−h)pij(t+h)−pij(t+h)+r=i∑pir(−h)prj(t+h)=−[1−pii(−h)]pij(t+h)+r=i∑pir(−h)prj(t+h)故有
p
i
j
(
t
)
−
p
i
j
(
t
+
h
)
≥
−
[
1
−
p
i
i
(
−
h
)
]
p
i
j
(
t
+
h
)
≥
−
[
1
−
p
i
i
(
−
h
)
]
p_{ij}(t)-p_{ij}(t+h)\ge -[1-p_{ii}(-h)]p_{ij}(t+h) \ge-[1-p_{ii}(-h)]
pij(t)−pij(t+h)≥−[1−pii(−h)]pij(t+h)≥−[1−pii(−h)]
p
i
j
(
t
)
−
p
i
j
(
t
+
h
)
≤
∑
r
≠
i
p
i
r
(
−
h
)
p
r
j
(
t
+
h
)
≤
∑
r
≠
i
p
i
r
(
−
h
)
=
1
−
p
r
j
(
−
h
)
\begin{aligned}p_{ij}(t)-p_{ij}(t+h) &\le \sum\limits_{r \ne i}p_{ir}(-h)p_{rj}(t+h)\\&\le \sum\limits_{r \ne i}p_{ir}(-h)=1-p_{rj}(-h)\end{aligned}
pij(t)−pij(t+h)≤r=i∑pir(−h)prj(t+h)≤r=i∑pir(−h)=1−prj(−h)因此,
∣
p
i
j
(
t
)
−
p
i
j
(
t
+
h
)
∣
≤
1
−
p
i
i
(
−
h
)
.
|p_{ij}(t)-p_{ij}(t+h)|\le 1 - p_{ii}(-h).
∣pij(t)−pij(t+h)∣≤1−pii(−h).综上所述,一般地有
∣
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
∣
<
1
−
p
i
i
(
∣
h
∣
)
|p_{ij}(t+h)-p_{ij}(t)|<1-p_{ii}(|h|)
∣pij(t+h)−pij(t)∣<1−pii(∣h∣)由正则性条件知
lim
h
→
0
∣
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
∣
=
0
,
\lim\limits_{h\rightarrow 0}|p_{ij}(t+h)-p_{ij}(t)|=0,
h→0lim∣pij(t+h)−pij(t)∣=0,即
p
i
j
(
t
)
p_{ij}(t)
pij(t)关于
t
t
t是一致连续的,证毕。
定理1: 设 p i j ( t ) p_{ij}(t) pij(t)是齐次马尔可夫过程的转移概率,则下列极限存在:
(1) lim Δ t → 0 1 − p i i ( Δ t ) Δ t = v i = q i i ≤ ∞ ; \lim\limits_{\Delta t\rightarrow0}\frac{1-p_{ii}(\Delta t)}{\Delta t}=v_i=q_{ii}\le \infty; Δt→0limΔt1−pii(Δt)=vi=qii≤∞;
(2) lim Δ t → 0 p i j ( Δ t ) Δ t = q i j = ∞ , i ≠ j . \lim\limits_{\Delta t \rightarrow 0}\frac{p_{ij}(\Delta t)}{\Delta t}=q_{ij}=\infty,i\ne j . Δt→0limΔtpij(Δt)=qij=∞,i=j.
称 q i j q_{ij} qij为齐次马尔可夫过程从状态 i i i到状态 j j j的转移速率或跳跃巧渡
推论1: 对有限状态的齐次马尔可夫过程, q i i = ∑ j ≠ i q i j < ∞ q_{ii}=\sum\limits_{j \ne i}q_{ij}< \infty qii=j=i∑qij<∞
证:因为有
∑
j
∈
I
p
i
j
(
Δ
t
)
=
1
,
\sum\limits_{j\in I}p_{ij}(\Delta t)=1,
j∈I∑pij(Δt)=1,即
1
−
p
i
i
(
Δ
t
)
=
∑
j
≠
i
p
i
j
(
Δ
t
)
.
1-p_{ii}(\Delta t)=\sum\limits_{j \ne i}p_{ij}(\Delta t).
1−pii(Δt)=j=i∑pij(Δt).由于求和是在有限集中进行,故有
lim
Δ
t
→
0
1
−
p
i
i
(
Δ
t
)
Δ
t
=
lim
Δ
t
→
0
∑
j
≠
t
p
i
j
(
Δ
t
)
Δ
t
=
∑
j
≠
i
q
i
j
\lim\limits_{\Delta t \rightarrow 0}\frac{1-p_{ii}(\Delta t)}{\Delta t}=\lim\limits_{\Delta t \rightarrow 0}\sum\limits_{j \ne t}\frac{p_{ij}(\Delta t)}{\Delta t}=\sum\limits_{j \ne i}q_{ij}
Δt→0limΔt1−pii(Δt)=Δt→0limj=t∑Δtpij(Δt)=j=i∑qij即
q
i
i
=
∑
j
≠
i
q
i
j
q_{ii}=\sum\limits_{j \ne i}q_{ij}
qii=j=i∑qij证毕。
对于状态空间无限的齐次马尔科夫过程,一般只有
q
i
i
≥
∑
j
≠
i
q
i
j
.
q_{ii}\ge \sum\limits_{j \ne i}q_{ij}.
qii≥j=i∑qij.
若连续时间齐次马尔可夫链是具有有限状态空间
I
=
{
0
,
1
,
⋯
,
n
}
I=\{0,1,\cdots,n\}
I={0,1,⋯,n},则其转移速率可构成以下形式的矩阵
Q
=
(
−
q
00
q
01
⋯
q
0
n
q
10
−
q
11
⋯
q
1
n
⋮
⋮
⋱
⋮
q
n
0
q
n
1
⋯
−
q
n
n
)
\boldsymbol{Q}=\left(\begin{array}{rrrr}-q_{00}&q_{01}&\cdots&q_{0n}\\q_{10}&-q_{11}&\cdots&q_{1n}\\\vdots&\vdots&\ddots&\vdots\\q_{n0}&q_{n1}&\cdots&-q_{nn}\end{array}\right)
Q=⎝⎜⎜⎜⎛−q00q10⋮qn0q01−q11⋮qn1⋯⋯⋱⋯q0nq1n⋮−qnn⎠⎟⎟⎟⎞
Q
\boldsymbol{Q}
Q矩阵的每一行元素之和为
0
0
0,对角线元素为负或
0
0
0,其余
i
≠
j
i\ne j
i=j时,
q
i
j
≥
0
q_{ij}\ge 0
qij≥0。
利用
Q
\boldsymbol{Q}
Q矩阵可以推出任意时间间隔
t
t
t的转移概率所满足的方程组,从而可以求解转移概率。
由切普曼-柯尔莫哥洛夫方程有
p
i
j
(
t
+
h
)
=
∑
k
∈
I
p
i
k
(
h
)
p
k
j
(
t
)
,
p_{ij}(t+h)=\sum\limits_{k \in I}p_{ik}(h)p_{kj}(t),
pij(t+h)=k∈I∑pik(h)pkj(t),或等价地
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
=
∑
k
≠
i
p
i
k
(
h
)
p
k
j
(
t
)
−
[
1
−
p
i
i
(
h
)
]
p
i
j
(
t
)
p_{ij}(t+h)-p_{ij}(t)=\sum\limits_{k \ne i}p_{ik}(h)p_{kj}(t)-[1-p_{ii}(h)]p_{ij}(t)
pij(t+h)−pij(t)=k=i∑pik(h)pkj(t)−[1−pii(h)]pij(t)两边除以
h
h
h后令
h
→
0
h\rightarrow0
h→0,取极限,可得
lim
h
→
0
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
h
=
lim
h
→
0
∑
k
≠
i
p
i
k
(
h
)
h
p
k
j
(
t
)
−
q
i
i
p
i
j
(
t
)
\lim\limits_{h \rightarrow0}\frac{p_{ij}(t+h)-p_{ij}(t)}{h}=\lim\limits_{h \rightarrow 0}\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)-q_{ii}p_{ij}(t)
h→0limhpij(t+h)−pij(t)=h→0limk=i∑hpik(h)pkj(t)−qiipij(t)上式的右边可交换极限与求和,于是得到下面结论。
定理2:(柯尔莫哥洛夫向后方程)假设 ∑ k ≠ i q i k = q i i \sum\limits_{k \ne i}q_{ik}=q_{ii} k=i∑qik=qii,则对一切 i , j i,j i,j及 t ≥ 0 t\ge 0 t≥0,有 p i j ′ ( t ) = ∑ k ≠ i q i k p k j ( t ) − q i i p i j ( t ) p^{\prime}_{ij}(t)=\sum\limits_{k \ne i}q_{ik}p_{kj}(t)-q_{ii}p_{ij}(t) pij′(t)=k=i∑qikpkj(t)−qiipij(t)
证明:对于任意固定的
N
N
N,有
lim
h
→
0
inf
∑
k
≠
i
p
i
k
(
h
)
h
p
k
j
(
t
)
≥
lim
h
→
0
inf
∑
k
≠
i
k
<
N
p
i
k
(
h
)
h
p
k
j
(
t
)
=
∑
k
≠
i
k
<
N
q
i
k
p
k
j
(
t
)
,
\lim\limits_{h \rightarrow 0}\inf \sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)\ge \lim\limits_{h \rightarrow 0}\inf \sum\limits_{k \ne i \atop k<N}\frac{p_{ik}(h)}{h}p_{kj}(t)=\sum\limits_{k \ne i \atop k<N}q_{ik}p_{kj}(t),
h→0liminfk=i∑hpik(h)pkj(t)≥h→0liminfk<Nk=i∑hpik(h)pkj(t)=k<Nk=i∑qikpkj(t),因为上式对一切
N
N
N成立,可见
lim
h
→
0
inf
∑
k
≠
i
p
i
k
(
h
)
h
p
k
j
(
t
)
≥
∑
k
≠
i
q
i
k
p
k
j
(
t
)
\lim\limits_{h \rightarrow 0}\inf\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)\ge \sum\limits_{k \ne i}q_{ik}p_{kj}(t)
h→0liminfk=i∑hpik(h)pkj(t)≥k=i∑qikpkj(t)为了倒转不等式,注意对于
N
>
i
N>i
N>i,由于
p
k
j
(
t
)
≤
1
p_{kj}(t)\le 1
pkj(t)≤1,所以
lim
h
→
0
sup
∑
k
≠
i
p
i
k
(
h
)
h
p
k
j
(
t
)
≤
lim
h
→
0
sup
[
∑
k
≠
i
k
<
N
p
i
k
(
h
)
h
p
k
j
(
t
)
+
∑
k
≤
N
p
i
k
(
h
)
h
]
≤
lim
h
→
0
sup
[
∑
k
≠
i
k
<
N
p
i
k
(
h
)
h
p
k
j
(
t
)
+
1
−
p
i
i
(
h
)
h
−
∑
k
≠
i
k
<
N
p
i
k
(
h
)
h
]
=
∑
k
≠
i
k
<
N
q
i
k
p
k
j
(
t
)
+
q
i
i
−
∑
k
≠
i
k
<
N
q
i
k
\begin{aligned}\lim\limits_{h\rightarrow 0}\sup\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)&\le \lim\limits_{h \rightarrow0}\sup[\sum\limits_{k \ne i \atop k<N}\frac{p_{ik}(h)}{h}p_{kj}(t)+\sum\limits_{k \le N}\frac{p_{ik}(h)}{h}]\\&\le \lim\limits_{h \rightarrow 0}\sup[\sum\limits_{k \ne i \atop k<N}\frac{p_{ik}(h)}{h}p_{kj}(t)+\frac{1-p_{ii}(h)}{h}-\sum\limits_{k\ne i \atop k <N}\frac{p_{ik}(h)}{h}]\\&=\sum\limits_{k \ne i \atop k <N}q_{ik}p_{kj}(t)+q_{ii}-\sum\limits_{k \ne i \atop k<N}q_{ik}\end{aligned}
h→0limsupk=i∑hpik(h)pkj(t)≤h→0limsup[k<Nk=i∑hpik(h)pkj(t)+k≤N∑hpik(h)]≤h→0limsup[k<Nk=i∑hpik(h)pkj(t)+h1−pii(h)−k<Nk=i∑hpik(h)]=k<Nk=i∑qikpkj(t)+qii−k<Nk=i∑qik因为上述不等式对一切
N
>
i
N>i
N>i成立,令
N
→
∞
N\rightarrow \infty
N→∞且由
∑
k
≠
i
q
i
k
=
q
i
i
\sum\limits_{k \ne i}q_{ik}=q_{ii}
k=i∑qik=qii,可以得到
lim
h
→
0
sup
∑
k
≠
i
p
i
k
(
h
)
h
p
k
j
(
t
)
≤
∑
k
≠
i
q
i
k
p
k
j
(
t
)
\lim\limits_{h \rightarrow 0}\sup\sum\limits_{k \ne i}\frac{p_{ik}(h)}{h}p_{kj}(t)\le \sum\limits_{k \ne i}q_{ik}p_{kj}(t)
h→0limsupk=i∑hpik(h)pkj(t)≤k=i∑qikpkj(t)进一步可得
lim
h
→
0
∑
k
≠
i
p
j
k
(
h
)
h
p
k
j
(
t
)
=
∑
k
≠
i
q
i
k
p
k
j
(
t
)
\lim\limits_{h \rightarrow 0}\sum\limits_{k \ne i}\frac{p_{jk}(h)}{h}p_{kj}(t)=\sum\limits_{k \ne i}q_{ik}p_{kj}(t)
h→0limk=i∑hpjk(h)pkj(t)=k=i∑qikpkj(t)证毕。
上定理中
p
i
j
(
t
)
p_{ij}(t)
pij(t)满足的微分方程组称为柯尔莫哥洛夫向后方程或向后方程,是因为在计算时刻
t
+
h
t+h
t+h的状态的概率分布时对退后到时刻
h
h
h的状态取条件,即从
p
i
j
(
t
+
h
)
=
∑
k
∈
I
P
{
X
(
t
+
h
)
=
j
∣
X
(
0
)
=
i
,
X
(
h
)
=
k
}
⋅
P
{
X
(
h
)
=
k
∣
X
(
0
)
=
i
}
=
∑
k
∈
I
p
k
j
(
t
)
p
i
k
(
h
)
\begin{aligned}p_{ij}(t+h)&=\sum\limits_{k \in I}P\{X(t+h)=j|X(0)=i,X(h)=k\}\cdot P\{X(h)=k|X(0)=i\}\\&=\sum\limits_{k\in I}p_{kj}(t)p_{ik}(h)\end{aligned}
pij(t+h)=k∈I∑P{X(t+h)=j∣X(0)=i,X(h)=k}⋅P{X(h)=k∣X(0)=i}=k∈I∑pkj(t)pik(h)
对时刻
t
t
t的状态取条件,可以导出另一组方程,称为柯尔莫哥洛夫向前方程,可得
p
i
j
(
t
+
h
)
=
∑
k
∈
I
p
i
k
(
t
)
p
k
j
(
h
)
p_{ij}(t+h)=\sum\limits_{k \in I}p_{ik}(t)p_{kj}(h)
pij(t+h)=k∈I∑pik(t)pkj(h)或
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
=
∑
k
∈
I
p
i
k
(
t
)
p
k
j
(
h
)
−
p
i
j
(
t
)
=
∑
k
≠
j
p
i
k
(
t
)
p
k
j
(
h
)
−
[
1
−
p
j
j
(
h
)
]
p
i
j
(
t
)
\begin{aligned}p_{ij}(t+h)-p_{ij}(t)&=\sum\limits_{k \in I}p_{ik}(t)p_{kj}(h)-p_{ij}(t)\\&=\sum\limits_{k \ne j}p_{ik}(t)p_{kj}(h)-[1-p_{jj}(h)]p_{ij}(t)\end{aligned}
pij(t+h)−pij(t)=k∈I∑pik(t)pkj(h)−pij(t)=k=j∑pik(t)pkj(h)−[1−pjj(h)]pij(t)所以
lim
h
→
0
p
i
j
(
t
+
h
)
−
p
i
j
(
t
)
h
=
lim
h
→
0
{
∑
k
≠
j
p
i
k
(
t
)
p
k
j
(
h
)
h
−
1
−
p
j
j
(
h
)
h
p
i
j
(
t
)
}
\lim\limits_{h \rightarrow 0}\frac{p_{ij}(t+h)-p_{ij}(t)}{h}=\lim\limits_{h \rightarrow 0}\left\{\sum\limits_{k \ne j}p_{ik}(t)\frac{p_{kj}(h)}{h}-\frac{1-p_{jj}(h)}{h}p_{ij}(t)\right\}
h→0limhpij(t+h)−pij(t)=h→0lim⎩⎨⎧k=j∑pik(t)hpkj(h)−h1−pjj(h)pij(t)⎭⎬⎫
定理3:(柯尔莫哥洛夫前向方程)在适当的正则条件下,柯尔莫哥洛夫前向方程表示为 p i j ′ ( t ) = ∑ k ≠ j p i k ( t ) q k j − p i j ( t ) q j j p^{\prime}_{ij}(t)=\sum\limits_{k \ne j}p_{ik}(t)q_{kj}-p_{ij}(t)q_{jj} pij′(t)=k=j∑pik(t)qkj−pij(t)qjj初始条件为 { p i j ( 0 ) = 1 , i = j , p i j ( 0 ) = 0 , i ≠ j \left\{\begin{array}{ll}p_{ij}(0)=1, &i=j,\\p_{ij}(0)=0,&i\ne j\end{array}\right. {pij(0)=1,pij(0)=0,i=j,i=j
向后方程和向前方程可以写成矩阵形式: P ′ ( t ) = Q P ( t ) , P ′ ( t ) = P ( t ) Q , \begin{aligned}\boldsymbol{P}^{\prime}(t)&=\boldsymbol{QP}(t),\\\boldsymbol{P}^{\prime}(t)&=\boldsymbol{P}(t)\boldsymbol{Q},\end{aligned} P′(t)P′(t)=QP(t),=P(t)Q,其中矩阵 Q \boldsymbol{Q} Q为 Q = ( − q 00 q 01 q 02 ⋯ q 10 − q 11 q 12 ⋯ q 20 q 21 − q 22 ⋯ ⋯ ⋯ ⋯ ⋯ ) \boldsymbol{Q}=\left(\begin{array}{rrrr}-q_{00}&q_{01}&q_{02}&\cdots\\ q_{10}& -q_{11}&q_{12}&\cdots\\q_{20}&q_{21}&-q_{22}&\cdots\\\cdots&\cdots&\cdots&\cdots\end{array}\right) Q=⎝⎜⎜⎛−q00q10q20⋯q01−q11q21⋯q02q12−q22⋯⋯⋯⋯⋯⎠⎟⎟⎞矩阵 P ′ ( t ) \boldsymbol{P}^{\prime}(t) P′(t)的元素为矩阵 P ( t ) \boldsymbol{P}(t) P(t)的元素的导数,而 P ( t ) = ( p 00 ( t ) p 01 ( t ) p 02 ( t ) ⋯ p 10 ( t ) p 11 ( t ) p 12 ( t ) ⋯ p 20 ( t ) p 21 ( t ) p 22 ( t ) ⋯ ⋯ ⋯ ⋯ ⋯ ) \boldsymbol{P}(t)=\left(\begin{array}{rrrr}p_{00}(t)&p_{01}(t)&p_{02}(t)&\cdots\\ p_{10}(t)&p_{11}(t)&p_{12}(t)&\cdots \\ p_{20}(t)&p_{21}(t)&p_{22}(t)&\cdots\\\cdots&\cdots&\cdots&\cdots\end{array}\right) P(t)=⎝⎜⎜⎛p00(t)p10(t)p20(t)⋯p01(t)p11(t)p21(t)⋯p02(t)p12(t)p22(t)⋯⋯⋯⋯⋯⎠⎟⎟⎞若 Q \boldsymbol{Q} Q是一个有限维矩阵,则有 P ( t ) = e Q t = ∑ j = 0 ∞ ( Q t ) j j ! \boldsymbol{P}(t)=\mathrm{e}^{\boldsymbol{Q}t}=\sum\limits_{j=0}^{\infty}\frac{(\boldsymbol{Q}t)^j}{j!} P(t)=eQt=j=0∑∞j!(Qt)j
定理4: 齐次马尔可夫过程在 t t t时刻处于状态 j ∈ I j\in I j∈I的绝对概率 p j ( t ) p_{j}(t) pj(t)满足下列方程: p j ′ ( t ) = − p j ( t ) q j j + ∑ k ≠ j p k ( t ) q k j p^{\prime}_j(t)=-p_{j}(t)q_{jj}+\sum\limits_{k \ne j}p_k(t)q_{kj} pj′(t)=−pj(t)qjj+k=j∑pk(t)qkj
证:已知 p j ( t ) = ∑ i ∈ I p i p i j ( t ) p_j(t)=\sum\limits_{i \in I}p_ip_{ij}(t) pj(t)=i∈I∑pipij(t)将向前方程两边乘以 p i p_i pi,并对 i i i求和得 ∑ i ∈ I p i p i j ′ ( t ) = ∑ i ∈ I ( − p i p i j ( t ) q j j ) + ∑ i ∈ I ∑ k ≠ j p i p i k ( t ) q k j \sum\limits_{i\in I}p_ip_{ij}^{\prime}(t)=\sum\limits_{i\in I}(-p_ip_{ij}(t)q_{jj})+\sum\limits_{i \in I}\sum\limits_{k \ne j}p_ip_{ik}(t)q_{kj} i∈I∑pipij′(t)=i∈I∑(−pipij(t)qjj)+i∈I∑k=j∑pipik(t)qkj故 p j ′ ( t ) = − p j ( t ) q j j + ∑ k ≠ j p k ( t ) q k j p_j^{\prime}(t)=-p_j(t)q_{jj}+\sum\limits_{k \ne j}p_k(t)q_{kj} pj′(t)=−pj(t)qjj+k=j∑pk(t)qkj证毕。
定义1: 设 p i j ( t ) p_{ij}(t) pij(t)为连续马尔可夫链的转移概率,若存在时刻 t 1 t_1 t1和 t 2 t_2 t2使得 p i j ( t 1 ) > 0 , p j i ( t 2 ) > 0 , p_{ij}(t_1)>0,\quad p_{ji}(t_2)>0, pij(t1)>0,pji(t2)>0,则称状态 i i i与 j j j是互通的。若所有状态都是互通的,则称马尔可夫链为不可约的。
定理5: 设连续时间的马尔可夫链是不可约的,则有下列性质:
(1)若它是正常返的,则极限 lim t → ∞ p i j ( t ) \lim\limits_{t \rightarrow \infty}p_{ij}(t) t→∞limpij(t)存在且等于 π j > 0 , j ∈ I \pi_j>0,j\in I πj>0,j∈I。这里 π j \pi_j πj是方程组 { π j q j j = ∑ k ≠ j π k q k j , ∑ j ∈ I π j = 1 \left\{\begin{aligned}\pi_jq_{jj}&=\sum\limits_{k \ne j}\pi_kq_{kj},\\\sum\limits_{j \in I}\pi_j&=1\end{aligned}\right. ⎩⎪⎪⎪⎨⎪⎪⎪⎧πjqjjj∈I∑πj=k=j∑πkqkj,=1的唯一非负解。此时称 { π j , j ∈ I } \{\pi_j,j\in I\} {πj,j∈I}是该过程的平稳分布,并且有 lim t → ∞ p j ( t ) = π j \lim\limits_{t \rightarrow \infty}p_{j}(t)=\pi_j t→∞limpj(t)=πj(2)若它是零常返的或非常返的,则 lim t → ∞ p i j ( t ) = lim t → ∞ p j ( t ) = 0 , i , j ∈ I \lim\limits_{t\rightarrow \infty}p_{ij}(t)=\lim\limits_{t \rightarrow \infty} p_j(t)=0,\quad i,j \in I t→∞limpij(t)=t→∞limpj(t)=0,i,j∈I