预备知识
定义(Hermite矩阵定义):复矩阵 A = [ a i j ] ∈ M n A=[a_{ij}]\in M_n A=[aij]∈Mn称为Hermite矩阵,是指 A = A ∗ A=A^{*} A=A∗,其中 A ∗ ≡ A ˉ ⊤ = [ a ˉ j i ] A^{*}\equiv {\bar{A}}^{\top} = [\bar{a}_{ji}] A∗≡Aˉ⊤=[aˉji]。如果 A = − A ∗ A=-A^{*} A=−A∗,则称之为斜Hermite矩阵。
定义(酉矩阵定义):设矩阵 U ∈ M n U\in M_n U∈Mn,若 U ∗ U = I U^{*}U=I U∗U=I,就称 U U U为酉矩阵。
定理(Courant-Fischer):设 A ∈ M n A\in M_n A∈Mn是具有特征值 λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n \lambda_1\le \lambda_2\le \cdots \le \lambda_n λ1≤λ2≤⋯≤λn的Hermite矩阵, k k k是给定的整数, 1 ≤ k ≤ n 1\le k \le n 1≤k≤n,那么 min w 1 , w 2 , ⋯ , w n − k ∈ C n max x ⊥ w 1 , w 2 , ⋯ , w n − k x ≠ 0 , x ∈ C n x ∗ A x x ∗ x = λ k \min\limits_{w_1,w_2,\cdots,w_{n-k}\in \mathbb{C}^n}\max\limits_{\stackrel{x \ne 0, x \in \mathbb{C}^n}{x \perp w_1,w_2,\cdots,w_{n-k}}}\frac{x^{*}Ax}{x^{*}x}=\lambda_k w1,w2,⋯,wn−k∈Cnminx⊥w1,w2,⋯,wn−kx=0,x∈Cnmaxx∗xx∗Ax=λk max w 1 , w 2 , ⋯ , w k − 1 ∈ C n min x ⊥ w 1 , w 2 , ⋯ , w k − 1 x ≠ 0 , x ∈ C n x ∗ A x x ∗ x = λ k \max\limits_{w_1,w_2,\cdots,w_{k-1}\in \mathbb{C}^n}\min\limits_{\stackrel{x \ne 0, x \in \mathbb{C}^n}{x \perp w_1,w_2,\cdots,w_{k-1}}}\frac{x^{*}Ax}{x^{*}x}=\lambda_k w1,w2,⋯,wk−1∈Cnmaxx⊥w1,w2,⋯,wk−1x=0,x∈Cnminx∗xx∗Ax=λk
证明:把 A A A写成 A = U Λ U ∗ A=U\Lambda U^{*} A=UΛU∗,其中 U U U是酉矩阵,而 Λ = d i a g { λ 1 , λ 2 , ⋯ , λ n } \Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\} Λ=diag{λ1,λ2,⋯,λn},且设 1 < k ≤ n 1<k \le n 1<k≤n。如果 x ≠ 0 x \ne 0 x=0,则 x ∗ A x x ∗ x = ( U ∗ x ) ∗ Λ ( U ∗ x ) x ∗ x = ( U ∗ x ) ∗ Λ ( U ∗ x ) ( U ∗ x ) ∗ ( U ∗ x ) \frac{x^{*}Ax}{x^{*}x}=\frac{(U^{*}x)^{*}\Lambda(U^{*}x)}{x^{*}x}=\frac{(U^{*}x)^{*}\Lambda(U^{*}x)}{(U^{*}x)^{*}(U^{*}x)} x∗xx∗Ax=x∗x(U∗x)∗Λ(U∗x)=(U∗x)∗(U∗x)(U∗x)∗Λ(U∗x)且 { U ∗ x : x ∈ C n , x ≠ 0 } = { y ∈ C n , y ≠ 0 } \{U^{*}x:x\in \mathbb{C}^n,x\ne 0\}=\{y \in \mathbb{C}^n,y\ne 0\} {U∗x:x∈Cn,x=0}={y∈Cn,y=0}。因此给定 w 1 , w 2 , ⋯ , w n − k ∈ C n w_1,w_2,\cdots,w_{n-k}\in \mathbb{C}^n w1,w2,⋯,wn−k∈Cn,便有 sup x ⊥ w 1 , ⋯ , w n − k x ≠ 0 x ∗ A x x ∗ x = sup y ⊥ U ∗ w 1 , ⋯ , U ∗ w n − k y ≠ 0 y ∗ Λ y y ∗ y = sup y ⊥ U ∗ w 1 , ⋯ , U ∗ w n − k y ∗ y = 1 ∑ i = 1 n λ i ∣ y i ∣ 2 ≥ sup y 1 = y 2 = ⋯ y k − 1 = 0 y ⊥ U ∗ w 1 , ⋯ , U ∗ w n − k y ∗ y = 1 ∑ i = 1 n λ i ∣ y i ∣ 2 = sup y ⊥ U ∗ w 1 , ⋯ , U ∗ w n − k ∣ y k ∣ 2 + ∣ y k + 1 ∣ 2 + ⋯ + ∣ y n ∣ 2 = 1 ∑ i = k n λ i ∣ y i ∣ 2 ≥ λ k \begin{aligned}\sup\limits_{\stackrel{x \ne 0}{x \perp w_1,\cdots,w_{n-k}}}\frac{x^{*}Ax}{x^{*}x}&=\sup\limits_{\stackrel{y \ne 0}{y \perp U^{*}w_1,\cdots,U^{*}w_{n-k}}}\frac{y^{*}\Lambda y}{y^{*}y}\\&= \sup\limits_{\stackrel{y^{*} y=1 }{y \perp U^{*}w_1,\cdots,U^{*}w_{n-k}}} \sum\limits_{i=1}^{n}\lambda_i|y_i|^2 \\&\ge \sup\limits_{\stackrel{\stackrel{y^{*}y =1}{y \perp U^{*}w_1,\cdots,U^{*}w_{n-k}}}{y_1=y_2=\cdots y_{k-1}=0}}\sum\limits_{i=1}^n \lambda_i |y_i|^2\\&=\sup\limits_{\stackrel{|y_k|^2+|y_{k+1}|^2+\cdots+|y_n|^2=1}{y \perp U^{*}w_1,\cdots,U^{*}w_{n-k}}}\sum\limits_{i=k}^n \lambda_i |y_i|^2\ge \lambda_k \end{aligned} x⊥w1,⋯,wn−kx=0supx∗xx∗Ax=y⊥U∗w1,⋯,U∗wn−ky=0supy∗yy∗Λy=y⊥U∗w1,⋯,U∗wn−ky∗y=1supi=1∑nλi∣yi∣2≥y1=y2=⋯yk−1=0y⊥U∗w1,⋯,U∗wn−ky∗y=1supi=1∑nλi∣yi∣2=y⊥U∗w1,⋯,U∗wn−k∣yk∣2+∣yk+1∣2+⋯+∣yn∣2=1supi=k∑nλi∣yi∣2≥λk这说明,对于任意 n − k n-k n−k个向量 w 1 , w 2 , ⋯ , w n − k w_1,w_2,\cdots,w_{n-k} w1,w2,⋯,wn−k sup x ⊥ w 1 , ⋯ , w n − k x ≠ 0 x ∗ A x x ∗ x ≥ λ k \sup\limits_{\stackrel{x \ne 0}{x \perp w_1,\cdots,w_{n-k}}}\frac{x^{*}Ax}{x^{*}x}\ge \lambda_k x⊥w1,⋯,wn−kx=0supx∗xx∗Ax≥λk为了使等式成立,存在向量 w i = u n − i + 1 w_i=u_{n-i+1} wi=un−i+1,其中 U = [ u 1 , ⋯ , u n ] U=[u_1,\cdots,u_n] U=[u1,⋯,un],则有 inf w 1 , ⋯ , w n − k sup x ⊥ w 1 , ⋯ , w n − k x ≠ 0 x ∗ A x x ∗ x = λ k \inf\limits_{w_1,\cdots,w_{n-k}}\sup\limits_{\stackrel{x\ne 0}{x \perp w_1,\cdots, w_{n-k}}}\frac{x^{*}Ax}{x^{*}x}=\lambda_k w1,⋯,wn−kinfx⊥w1,⋯,wn−kx=0supx∗xx∗Ax=λk又因为极值是可以达到的,所以用 min \min min和 max \max max替换 inf \inf inf和 sup \sup sup。
Weyl不等式
定理(Weyl不等式):设 A A A, B ∈ M n B\in M_n B∈Mn是Hermite矩阵,又设各个特征值 λ i ( A ) , λ i ( B ) \lambda_{i}(A),\lambda_{i}(B) λi(A),λi(B)以及 λ i ( A + B ) \lambda_{i}(A+B) λi(A+B)均按照递增顺序排列,则对每个 k = 1 , 2 , ⋯ , n k=1,2,\cdots,n k=1,2,⋯,n有 λ k ( A ) + λ 1 ( B ) ≤ λ k ( A + B ) ≤ λ k ( A ) + λ n ( B ) \lambda_k(A)+\lambda_1(B)\le \lambda_k(A+B)\le\lambda_k(A)+\lambda_n(B) λk(A)+λ1(B)≤λk(A+B)≤λk(A)+λn(B)
证明:对于任意复数 x ∈ C n x\in \mathbb{C}^n x∈Cn,有不等式 λ 1 ( B ) ≤ x ∗ B x x ∗ x ≤ λ n ( B ) \lambda_{1}(B)\le \frac{x^{*}Bx}{x^{*}x}\le \lambda_n(B) λ1(B)≤x∗xx∗Bx≤λn(B)因而对任意 k = 1 , 2 , ⋯ , n k=1,2,\cdots,n k=1,2,⋯,n有 λ k ( A + B ) = min w 1 , ⋯ , w n − k ∈ C n max x ⊥ w 1 , ⋯ , w n − k x ≠ 0 x ∗ ( A + B ) x x ∗ x = min w 1 , ⋯ , w n − k ∈ C n max x ⊥ w 1 , ⋯ , w n − k x ≠ 0 [ x ∗ A x x ∗ x + x ∗ B x x ∗ x ] ≥ min w 1 , ⋯ , w n − k ∈ C n max x ⊥ w 1 , ⋯ , w n − k x ≠ 0 [ x ∗ A x x ∗ x + λ 1 ( B ) ] = λ k ( A ) + λ 1 ( B ) \begin{aligned}\lambda_k(A+B)&=\min\limits_{w_1,\cdots,w_n-k \in \mathbb{C}^n}\max\limits_{\stackrel{x \ne0}{x \perp w_1,\cdots,w_{n-k}}}\frac{x^{*}(A+B)x}{x^{*}x}\\&=\min\limits_{w_1,\cdots,w_n-k \in \mathbb{C}^n}\max\limits_{\stackrel{x \ne0}{x \perp w_1,\cdots,w_{n-k}}} \left[\frac{x^{*}Ax}{x^{*}x}+\frac{x^{*}Bx}{x^{*}x}\right]\\ &\ge \min\limits_{w_1,\cdots,w_n-k \in \mathbb{C}^n}\max\limits_{\stackrel{x \ne0}{x \perp w_1,\cdots,w_{n-k}}} \left[\frac{x^{*}Ax}{x^{*}x}+\lambda_1(B)\right]=\lambda_k(A)+\lambda_1(B) \end{aligned} λk(A+B)=w1,⋯,wn−k∈Cnminx⊥w1,⋯,wn−kx=0maxx∗xx∗(A+B)x=w1,⋯,wn−k∈Cnminx⊥w1,⋯,wn−kx=0max[x∗xx∗Ax+x∗xx∗Bx]≥w1,⋯,wn−k∈Cnminx⊥w1,⋯,wn−kx=0max[x∗xx∗Ax+λ1(B)]=λk(A)+λ1(B)
推论(Weyl不等式):设 A A A, B ∈ M n B\in M_n B∈Mn是Hermite矩阵。假定 B B B是半正定矩阵,且 A A A和 A + B A+B A+B均按照递增顺序排列,则对每个 k = 1 , 2 , ⋯ , n k=1,2,\cdots,n k=1,2,⋯,n有 λ k ( A ) ≤ λ k ( A + B ) \lambda_k(A)\le \lambda_k(A+B) λk(A)≤λk(A+B)