CVPR2021:VMI-FGSM增强对抗样本可迁移性方法

本文介绍了对抗攻击的概念,特别是寻找使分类器出错的对抗样本的过程。定义了梯度方差作为衡量分类器在附近样本上的梯度变化的指标,并详细阐述了其计算方法,包括离散化的处理。最后,提到了VMI-FGSM算法的流程,该算法利用梯度方差来指导对抗样本的生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文方法介绍

给定一个带有参数 θ \theta θ的目标分类器 f f f,一个干净的样本 x ∈ X ⊂ R d x\in \mathcal{X} \subset \mathbb{R}^d xXRd。对抗攻击的目标是找到一个对抗样本 x a d v ∈ X x^{adv}\in \mathcal{X} xadvX满足如下条件: f ( x ; θ ) ≠ f ( x a d v ; θ ) s . t . ∥ x − x a d v ∥ < ε f(x;\theta)\ne f(x^{adv};\theta)\quad \mathrm{s.t.} \quad \|x-x^{adv}\|< \varepsilon f(x;θ)=f(xadv;θ)s.t.xxadv<ε

定义1(梯度方差):给定一个带有参数 θ \theta θ的分类器 f f f和损失函数 J ( x , y ; θ ) J(x,y;\theta) J(x,y;θ),一个干净的样本 x ∈ X x \in \mathcal{X} xX,以及最大扰动 ϵ ′ \epsilon^{\prime} ϵ,梯度方差定义为: V ϵ ′ g ( x ) = E ∥ x ′ − x ∥ p < ϵ ′ [ ∇ x ′ J ( x ′ , y ; θ ) ] − ∇ x J ( x , y ; θ ) V_{\epsilon^{\prime}}^g(x)=\mathbb{E}_{\|x^\prime -x\|_p < \epsilon^{\prime}}[\nabla_{x^{\prime}}J(x^{\prime},y;\theta)]-\nabla_x J(x,y;\theta) Vϵg(x)=Exxp<ϵ[xJ(x,y;θ)]xJ(x,y;θ)

为了方便观看,将 V ϵ ′ g ( x ) V_{\epsilon^{\prime}}^g(x) Vϵg(x)的记号简化为 V ( x ) V(x) V(x),令 ϵ ′ = β ⋅ ϵ \epsilon^{\prime}=\beta \cdot \epsilon ϵ=βϵ,其中 β \beta β是超参数。在实际中,由于输入空间是离散的,所以不能直接计算 E ∥ x ′ − x ∥ p < ϵ ′ [ ∇ x ′ J ( x ′ , y ; θ ) ] \mathbb{E}_{\|x^\prime -x\|_p < \epsilon^{\prime}}[\nabla_{x^{\prime}}J(x^{\prime},y;\theta)] Exxp<ϵ[xJ(x,y;θ)]所以,通过采样 N N N个样本将上公式离散化为 V ( x ) = 1 N ∑ i = 1 N ∇ x i J ( x i , y ; θ ) − ∇ x J ( x , y ; θ ) V(x)=\frac{1}{N}\sum\limits_{i = 1}^N \nabla_{x^i}J(x^i,y;\theta)-\nabla_x J(x,y;\theta) V(x)=N1i=1NxiJ(xi,y;θ)xJ(x,y;θ)其中 x i = x + r i x^i = x + r_i xi=x+ri r i ∼ U [ − ( β ⋅ ϵ ) d , ( β ⋅ ϵ ) d ] r_i \sim U[-(\beta \cdot \epsilon)^d ,(\beta \cdot \epsilon)^d] riU[(βϵ)d,(βϵ)d] U [ a d , b d ] U[a^d,b^d] U[ad,bd]表示的是 d d d维均匀分布。
  在获得梯度方差之后,可以用第 t − 1 t-1 t1步迭代的梯度方差 V ( x t − 1 a d v ) V(x^{adv}_{t-1}) V(xt1adv)来调整第 t t t步关于对抗样本 x t a d v x_{t}^{adv} xtadv的梯度。 V M I \mathrm{VMI} VMI- F G S M \mathrm{FGSM} FGSM具体的算法流程图如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值