Ubuntu18.04双显卡笔记本+ROS 安装nvidia显卡驱动、CUDA10.2、CUDNN8.3.0、Eigen3.3.7

目录

一、nvidia显卡驱动安装

1.查看显卡型号

2.检查自己电脑的gpu是否CUDA-capable

3.安装 gcc :

4.删除旧的NVIDIA驱动:

5.查看显卡驱动

6.安装双显卡切换指示器

二、安装CUDA

1.下载安装包

2.cuda安装

3. 测试是否安装成功

​三、安装CUDNN 

 四、安装 Eigen3.3.7

 1.下载安装包

 2.安装


一、nvidia显卡驱动安装

1.查看显卡型号

        输入如下命令:

    lshw -c video

        会显示如下信息:

        图中 WARING 可使用 sudo lshw -c video 命令去除。

        输入如下命令查看Nvidia显卡的详细信息:

    nvidia-smi

        结果如下:

         因为自己安装试错了很多次,过程没有截图,这是最终结果。上图中红框表示已安装的显卡驱动版本,蓝框表示支持CUDA的最高版本(我实际安装的CUDA版本为CUDA10.2,后文会讲到)。

2.检查自己电脑的gpu是否CUDA-capable

    lspci | grep -i nvidia
#没有lspci就安装
    apt install pciutils

        输出结果:

3.安装 gcc :

    sudo yum -y install gcc-c++

或

    sudo apt install build-essential

4.删除旧的NVIDIA驱动:

    sudo apt-get remove nvidia-*
    sudo apt-get autoremove

或者

    sudo apt-get --purge remove nvidia-*
    # sudo ./NVIDIA-Linux-x86_64-410.57.run -uninstall
    
    sudo update-initramfs -u
    sudo reboot now

        更新系统软件仓库列表

    sudo apt-get update

5.查看显卡驱动

        输入如下命令查看系统推荐安装哪个版本的N卡驱动:

    ubuntu-drivers devices

显示结果如下:

        在上面这些输出中可以看到recommended关键词,说明系统推荐安装的N卡驱动是"nvidia-driver-510"选择你看到推荐版本安装,本例使用nvidia-driver-510,然后安装几个必要组件,命令如下:

    sudo apt-get install nvidia-settings nvidia-driver-510 nvidia-prime

6.安装双显卡切换指示器

    sudo add-apt-repository ppa:nilarimogard/webupd8
    sudo apt-get update
    sudo apt-get install prime-indicator
    sudo reboot 

        重启后,右上角会出现一个显卡指示器,默认情况下是Nvidia图标,说明现在使用的是N卡,点击这个图标选择"Quick switch graphics…",按下确认后会自动重启桌面,此时就会切换到Intel显卡了,图标也变成了Intel。大家可以尝试着在两个显卡之间切换,并使用下面的命令查看是否切换成功,然后测试其性能切换到Intel卡后,查看N卡是否关闭,如果N卡末尾是(rev ff),则表示成功关闭了N卡,现在使用的是I卡,如果末尾不是ff,则说明现在使用的是N卡

         然后再通过命令行  nvidia-smi 查看NVIDIA版本检验是否安装完成。

二、安装CUDA

1.下载安装包

        根据自己的需要,我安装的是CUDA10.2版本。在CUDA官网选择适合自己系统的版本下载。
我的系统是Ubuntu18.04、64位,选择CUDA10版本如下:

        这里放置一个CUDA各版本链接,大家按需下载:CUDA各版本链接,官网网速不好可参考cuda10.2的网盘链接:https://pan.baidu.com/s/1QRzSXPn_87dH10FmLaC-bA   提取码: j7v6 

2.cuda安装

        具体安装,参照官网教程安装即可

    wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
    sudo sh cuda_10.2.89_440.33.01_linux.run

        在运行 run文件时,会出现三次提示,在第三次提示时取消 Drives 的勾选(因为显卡驱动已经安装),否则,cuda10.2默认的显卡驱动版本和自己电脑已安装版本冲突会导致cuda安装失败。一定要选择不安装驱动!!!

        添加环境变量:

export CUDA_HOME=/usr/local/cuda 
export PATH=$PATH:$CUDA_HOME/bin 
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

        保存并退出,生效环境变量:

    source ~/.bashrc

3. 测试是否安装成功

        查看安装后版本是否显示:

nvcc -V

      测试是否安装成功:

    cd /usr/local/cuda/samples/1_Utilities/deviceQuery 
    sudo make
    ./deviceQuery

        结果如下则安装成功。

三、安装CUDNN 

        在官网下载安装包,需要注册登录才能下载。选择适合自己的版本,我选择的CUDNN8.3.0版本。先放CUDNN各版本链接:CUDNN各版本链接 。记得,下载的是红框框选的压缩包,而非 Deb文件!!

        下载完成后解压并进入文件夹:

    sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ 
    sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ 
    sudo chmod a+r /usr/local/cuda/include/cudnn.h 
    sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

        自己按照网上博客输入下面命令行查看cudnn版本无效:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

        后来才整明白,之前的CUDNN版本号查看操作是上述命令行,新cudnn都无法再通过这条指令查看版本号,新cudnn版本信息都写在 cudnn_version.h 头文件中

        故,如果你运行上面的命令行窗口无有效输出,可尝试继续下面操作:

    sudo cp cuda/include/cudnn_version.h /usr/local/cuda/include/
    cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

        若出现下面结果,则cudnn安装完成,图中显示cudnn版本为 8.3.0。

 四、安装 Eigen3.3.7

        自己目前手动安装的Eigen版本,其他安装方法后续更新。

1.下载安装包

        百度网盘链接:https://pan.baidu.com/s/1gp7VXqgvBvdeUQkz2p_hMw  提取码: 3efd

2.安装

    sudo tar -xzvf eigen-3.3.7.tar.gz -C /usr/local/include
    cd /usr/local/include/
    sudo mv eigen3.3.7 eigen3
    sudo cp -r /usr/local/include/eigen3/Eigen /usr/local/include

        目前,自己只是安装完成,还未使用,先记录下自己达到这步的过程,供大家参考,有不正确的地方还请大家指点,以后更新时修改。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值