Python神经网络学习(七)--强化学习--使用神经网络

前言

前面说到了强化学习,但是仅仅是使用了一个表格,这也是属于强化学习的范畴了,毕竟强化学习属于在试错中学习的。

但是现在有一些问题,如果这个表格非常大呢?悬崖徒步仅仅是一个长12宽4,每个位置4个动作的表格而已,如果游戏是英雄联盟,那么多的位置,每个位置那么多的可能动作,画出一个表格简直是不可想象的。

但其实,如果把这个表格看作一个数学函数,他的输入是坐标,输出是一个动作(或者每个动作对应的价值):

那也就是说,只要我们有一个坐标,得到一个动作,中间什么过程是可以不用管的,还记得这篇文章中说过:神经元(函数)+神经元(函数) = 神经网络(人工神经网络),那么,中间这一块也就可以使用神经网络代替,这也就是深度强化学习。

论文(Playing Atari with Deep Reinforcement Learning)地址:https://arxiv.org/abs/1312.5602

 设置环境

注意:今天的环境代码我修改过了,跟上一篇的不一样,所以大家还是要先读一下环境代码。

本次环境代码中添加了对于棋盘大小的设置,修复了一些bug。

# -*- coding: utf-8 -*-
"""
作者:CSDN,chuckiezhu
作者地址:https://blog.csdn.net/qq_38431572
本文可用作学习使用,交流代码时需要附带本出处声明
"""

import random
import numpy as np

from gym import spaces

"""
nrows
     0  1  2  3  4  5  6  7  8  9  10  11  ncols
   ---------------------------------------
0  |  |  |  |  |  |  |  |  |  |  |   |   |
   ---------------------------------------
1  |  |  |  |  |  |  |  |  |  |  |   |   |
   ---------------------------------------
2  |  |  |  |  |  |  |  |  |  |  |   |   |
   ---------------------------------------
3   * |       cliff                  | ^ |

  *: start point
  cliff: cliff
  ^: goal
"""

class CustomCliffWalking(object):
    def __init__(self, stepReward: int=-1, cliffReward: int=-10, goalReward: int=10, col=12, row=4) -> None:
        self.sr = stepReward
        self.cr = cliffReward
        self.gr = goalReward
        self.col = col
        self.row = row

        self.action_space = spaces.Discrete(4)  # 上下左右
        self.reward_range = (cliffReward, goalReward)

        self.pos = np.array([row-1, 0], dtype=np.int8)  # agent 在3,0处出生,掉到悬崖内就会死亡,触发done和cliffReward

        self.die_pos = []
        for c in range(1, self.col-1):
            self.die_pos.append([self.row-1, c])
        print("die pos: ", self.die_pos)
        print("goal pos: ", [[self.row-1, self.col-1]])

        self.reset()
    
    def reset(self, random_reset=False):
        """
        初始化agent的位置
        random: 是否随机出生, 如果设置random为True, 则出生点会随机产生
        """
        x, y = self.row-1, 0
        if random_reset:
            y = random.randint(0, self.col-1)
            if y == 0:
                x = random.randint(0, self.row-1)
            else:  # 除了正常坐标之外,还有一个不正常坐标:(3, 0)
                x = random.randint(0, self.row-2)
            # 严格来讲,cliff和goal不算在坐标体系内
        # agent 在3,0处出生,掉到悬崖内就会死亡,触发done和cliffReward
        self.pos = np.array([x, y], dtype=np.int8)
        # print("reset at:", self.pos)
    
    def step(self, action: int) -> list[list, int, bool, bool, dict]:
        """
        执行一个动作
        action:
            0: 上
            1: 下
            2: 左
            3: 右
        """

        move = [
            np.array([-1, 0], dtype=np.int8), # 向上,就是x-1, y不动,
            np.array([ 1, 0], dtype=np.int8), # 向下,就是x+1, y不动,
            np.array([0, -1], dtype=np.int8), # 向左,就是y-1, x不动,
            np.array([0,  1], dtype=np.int8), # 向右,就是y+1, x不动,
        ]
        new_pos = self.pos + move[action]
        # 上左不能小于0
        new_pos[new_pos < 0] = 0  # 超界的处理,比如0, 0 处向上或者向右走,处理完还是0,0
        # 上右不能超界
        if new_pos[0] > self.row-1:
            new_pos[0] = self.row-1  # 超界处理
        if new_pos[1] > self.col-1:
            new_pos[1] = self.col-1

        reward = self.sr  # 每走一步的奖励
        die = False
        win = False
        info = {
            "reachGoal": False,
            "fallCliff": False,
        }
        
        if self.__is_pos_die(new_pos.tolist()):
            die = True
            info["fallCliff"] = True
            reward = self.cr
        elif self.__is_pos_win(new_pos.tolist()):
            win = True
            info["reachGoal"] = True
            reward = self.gr

        self.pos = new_pos  # 更新坐标
        return new_pos, reward, die, win, info
    
    def __is_pos_die(self, pos: list[int, int]) -> bool:
        """判断自己的这个状态是不是已经结束了"""
        return pos in self.die_pos

    def __is_pos_win(self, pos: list[int, int]) -> bool:
        """判断自己的这个状态是不是已经结束了"""
        return pos in [
            [self.row-1, self.col-1],
        ]

至于讲解这个环境,我觉得这个注释还是比较清楚的,如果有不明白的,请评论留言告知我。

制作网络

首先,我们先把自己代入表格,如果我们站到某个坐标,那么我们应该知道四个方向上的奖励,所以,网络可以有两种方式;

方式一、

网络输入是坐标和方向,输出是对应的奖励。

方式二、

网络输入是坐标,输出是四个方向对应的奖励。

这里我要来一句场外推理:方式一真的很麻烦,并且选择动作的时候,有多少个动作需要经过多少次网络。所以方式二是比较好的选择。


class Qac(nn.Module):
    def __init__(self, in_shape, out_shape) -> None:
        super(Qac, self).__init__()
        self.in_shape = in_shape  # 就是 智能体 现在的坐标
        self.action_space = out_shape  # 上0下1左2右3
        self.dense1 = nn.Linear(self.in_shape, self.action_space)
        # 输出就是每个动作的价值

        self.lrelu = nn.LeakyReLU()  # 换用tanh
        self.softmax = nn.Softmax(-1)
    
    def forward(self, x) -> torch.Tensor:
        x = self.dense1(x)
        return x

    def sample_action(self, action_value: torch.Tensor, epsilon: float):
        """从产生的动作概率中采样一个动作,利用epsilon贪心"""
        if random.random() < epsilon:
            # 随机选择
            action = random.randint(0, self.action_space-1)
            action = torch.tensor(action)
        else:
            action = torch.argmax(action_value)
        
        return action
    
    def load_model(self, modelpath):
        """加载模型"""
        tmp = torch.load(modelpath)
        self.load_state_dict(tmp["model"])
    
    def save_model(self, modelpath):
        """保存模型"""
        tmp = {
            "model": self.state_dict(),
        }
        torch.save(tmp, modelpath)

细心的人可能发现了,这个网络只有一层,非常简单,好像没有所谓的“特征提取”就直接到输出层了。这里有一个小技巧,就是我手动把坐标转成了onehot向量,可以认为是手动提取了特征。

def num_to_onehot(pos: torch.Tensor) -> torch.Tensor:
    """把坐标转成one_hot向量"""
    n = int((pos[0] * 12 + pos[1]).item())
    return nn.functional.one_hot(torch.tensor(n), num_classes=48)

如果大家使用两层神经网络,直接输入坐标,中间层是48,然后是一个输出层,也可以, 但是我试了,训练很慢,效果不好。不如这样直接手动编码了。

训练

整个训练的代码我直接贴在这里了:

# -*- coding: utf-8 -*-
"""
利用DQN实现
"""
"""
作者:CSDN,chuckiezhu
作者地址:https://blog.csdn.net/qq_38431572
本文可用作学习使用,交流代码时需要附带本出处声明
"""
import os
import random
import torch
import numpy as np
from torch import nn

from matplotlib import pyplot as plt

from cliff_walking_env import CustomCliffWalking


nepisodes = 10000  # total 1w episodes
epsilon = 1.0  # epsilon greedy policy
epsilon_min = 0.05
epsilon_decay = 0.9975

gamma = 0.9  # discount factor
lr = 0.001
random_reset = False

seed = 42

normalization = torch.tensor([3, 11], dtype=torch.float)

sr = -1
cr = -10
gr = 10

class Qac(nn.Module):
    def __init__(self, in_shape, out_shape) -> None:
        super(Qac, self).__init__()
        self.in_shape = in_shape  # 就是智能体现在的坐标
        self.action_space = out_shape  # 上0下1左2右3
        self.dense1 = nn.Linear(self.in_shape, self.action_space)

        # 输出就是每个动作的价值

        self.lrelu = nn.LeakyReLU()  # 换用tanh
        self.softmax = nn.Softmax(-1)
    
    def forward(self, x) -> torch.Tensor:
        x = self.dense1(x)
        return x

    def sample_action(self, action_value: torch.Tensor, epsilon: float):
        """从产生的动作概率中采样一个动作,利用epsilon贪心"""
        if random.random() < epsilon:
            # 随机选择
            action = random.randint(0, self.action_space-1)
            action = torch.tensor(action)
        else:
            action = torch.argmax(action_value)
        
        return action
    
    def load_model(self, modelpath):
        """加载模型"""
        tmp = torch.load(modelpath)
        self.load_state_dict(tmp["model"])
    
    def save_model(self, modelpath):
        """保存模型"""
        tmp = {
            "model": self.state_dict(),
        }
        torch.save(tmp, modelpath)


def num_to_onehot(pos: torch.Tensor) -> torch.Tensor:
    """把坐标转成one_hot向量"""
    n = int((pos[0] * 12 + pos[1]).item())
    return nn.functional.one_hot(torch.tensor(n), num_classes=48)

    
def main():
    global epsilon
    random.seed(seed)
    torch.manual_seed(seed=seed)
    plt.ion()

    os.makedirs("./out/ff_DQN/")
    # cw = gym.make("CliffWalking-v0", render_mode="human")
    cw = CustomCliffWalking(stepReward=sr, goalReward=gr, cliffReward=cr)

    # 专程onehot了
    Q = Qac(in_shape=48, out_shape=cw.action_space.n)

    optimizer = torch.optim.Adam(Q.parameters(), lr=lr)
    loss_fn = torch.nn.MSELoss()

    win_1000 = []  # 记录最近一千场赢的几率
    total_win = 0
    for i in range(1, nepisodes+1):
        cw.reset(random_reset=random_reset)  # 重置环境
        steps = 0
        while True:
            steps += 1
            state_now = torch.tensor(cw.pos, dtype=torch.float)
            state_now = num_to_onehot(state_now).unsqueeze_(0).to(torch.float)
            action_values = Q(state_now)
            action_values = action_values.squeeze()
            action_now = Q.sample_action(action_value=action_values, epsilon=epsilon)

            action_now_value = action_values[action_now]  # 这个是采取这个动作的预测奖励

            state_next, reward_now, terminated, truncated, info = cw.step(action=action_now.item())   # 执行动作
            state_next = num_to_onehot(state_next).unsqueeze_(0).to(torch.float)
            with torch.no_grad():
                next_values = Q(state_next)
                next_values = next_values.squeeze()
                # 得到下一个的动作,(同一个策略下,因为这是onpolicy的sarsa
                action_next = Q.sample_action(action_value=action_values, epsilon=epsilon)
                action_next_value = next_values[action_next]  # 计算下一个动作的预期价值

            
            # 计算  instantR + gamma * value_next,这个是实际上这个动作带来的预期收益
            discounted_reward = reward_now + gamma * action_next_value * (1 - terminated) * (1 - truncated)

            # 计算误差
            loss = loss_fn(action_now_value, discounted_reward)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if terminated or truncated:
                if terminated:
                    win_1000.append(0)
                if truncated:
                    win_1000.append(1)
                    total_win += 1
                break

            epsilon = epsilon * epsilon_decay
            epsilon = max(epsilon, epsilon_min)  # 衰减学习旅
        win_1000 = win_1000[-1000:]
        win_rate = sum(win_1000)/1000.0
        print("{}/{}, 当前探索率: {}, 是否成功: {}, 千场胜率:{}.".format(i, nepisodes, epsilon, truncated, win_rate), flush=True)
        if i % 10000 == 0:
            Q.save_model("./out/ff_DQN/Qac_{}_{}_{}_{}.pth".format(i, gr, cr, win_rate))
    print("total win: ", total_win)

    # 收尾测试看看能不能通关
    path = np.zeros((4, 12), dtype=np.float64)
    cw.reset(random_reset=False)

    steps = 0
    while steps <= 48:  # 走,48步走不到头就不会走到了
        steps += 1
        state_now = torch.tensor(cw.pos, dtype=torch.float)
        state_now = num_to_onehot(state_now).unsqueeze_(0).to(torch.float)
        action_values = Q(state_now).squeeze()
        # 贪心算法选择动作
        action_now = Q.sample_action(action_values, 0)
        print(cw.pos[0], cw.pos[1], action_now)
        new_pos, _, die, win, _ = cw.step(action=action_now)
        if win:
            print("[+] you win!")
            break
        if die:
            print("[+] you lose!")
            break
        x = new_pos[0]
        y = new_pos[1]
        if x >= 0 and x <= 3 and y >= 0 and y <= 11:
            path[x, y] = 1.0
    plt.imshow(path)
    plt.colorbar()
    plt.savefig("./out/ff_DQN/path_sarsa_"+str(sr)+"_"+str(gr)+"_"+str(cr)+".png")

if __name__ == "__main__":
    main()

上面的代码我测试没问题,如果不修改直接使用是完全可以的,目录结构是这样的:

那两个文件夹都是自动生成的,不需要手动建立。 

网络结构分析

这是上面代码的网络结构和更新流程。注意:实线代表有梯度,虚线代表无梯度。

每次由环境产生一个状态,先转成一个one_hot向量,作为网络的输入,得到四个动作分别价值多少。然后采样到的动作得到当前的Q(s, a)值,也就是action_value。

另一方面,采样得到的动作送入环境,环境给出下一个状态和立即奖励。下一个状态送入网络(没有梯度的计算),同样得到四个动作的价值。由于代码使用的是SARSA算法,所以需要按照同样的策略采样一个动作,同时得到动作的价值。也就是next_action_value。

这个时候,就可以根据环境的立即奖励reward_now和下一个状态的动作的价值next_action_value得到一个ground truth,而action_value作为网络的预测值,这两个可以用于计算损失。

损失的反向传播就是沿着实现传递到顶。实现网络的更新。

 

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ChuckieZhu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值