离散数学 - 集合论

集合论

主要内容

  • 集合的基本概念
  • 集合的运算
  • 有限集合的计数
  • 集合的笛卡尔积
集合的基本概念
  • 什么是集合?
    集合可以理解成由离散的个体构成的整体.同时,成这些个体为集合的元素.常见的数集,有自然数集(N),整数集(Z),有理数集(Q),实数集®,复数集©.

  • 集合怎么表示?

    1. 枚举–一个个列出来
    2. 谓词表示法(类似于高中的描述法)–通过谓词概括集合的性质

    同样对于由1, 2, 3组成的集合,

    • 枚举法 { 1 , 2 , 3 } \{1, 2, 3\} {1,2,3}
    • 谓词法 { x ∣ 1 ≤ x ≤ 3 , x ∈ N } \{ x| 1 \le x \le 3,x \in N \} {x1x3,xN}
  • 集合具有什么特性?
    1. 无序性
    2. 确定性
    3. 互异性
    4. 任意性

  • 元素与集合间是隶属关系 ∈ , ∉ \in , \notin ,/

  • 集合与集合之间的关系是包含关系 ⊆ , ⊈ \subseteq ,\not\subseteq ,

    1. A ⊆ B ⇔ ∀ x ( x ∈ A → x ∈ B ) A\subseteq B\Leftrightarrow\forall x(x\in A\rightarrow x\in B) ABx(xAxB)
    2. A = B ⇔ A ⊆ B ∧ B ⊆ A A=B\Leftrightarrow A\subseteq B\land B\subseteq A A=BABBA
    3. A ⊂ B ⇔ A ⊆ B ∧ A ≠ B A\subset B\Leftrightarrow A\subseteq B\land A\not=B ABABA=B
    4. A ⊈ B ⇔ ∃ x ( x ∈ A ∧ x ∉ B ) A\not\subseteq B \Leftrightarrow\exists x(x\in A\land x\not\in B) ABx(xAxB)

   特别的,空集是任何集合的子集

  • 集合的幂集 P ( A ) = { x ∣ x ⊆ A } P(A) = \{x|x\subseteq A\} P(A)={xxA},集合的幂集是集合所有子集构成的集合,是集合的集合.
  • 全集E
集合的运算
  • A − B = { x ∣ x ∈ A ∧ x ∉ B } A-B = \{x|x\in A\land x\not\in B\} AB={xxAxB}
集合运算的性质
  • 对于 ∩ / ∪ \cap/\cup /满足交换律,结合律,幂等律(自己之间进行交或并运算还是自己)

  • ∩ \cap ∪ \cup , ∪ \cup ∩ \cap 都满足分配率.

  • ∩ \cap ∪ \cup , ∪ \cup ∩ \cap 都满足吸收率

    1. A ∪ ( A ∩ B ) = A A\cup(A\cap B) = A A(AB)=A
    2. A ∩ ( A ∪ B ) = B A\cap(A\cup B) = B A(AB)=B
  • 德摩根定律补运算和交/并运算满足德摩根定律

    1. A − ( B ∪ C ) = ( A − B ) ∩ ( A − C ) A -{(B\cup C)} =(A-B)\cap(A-C) A(BC)=(AB)(AC)
    2. A − ( B ∩ C ) = ( A − B ) ∪ ( A − C ) A-{(B\cap C)} =(A-B)\cup(A-C) A(BC)=(AB)(AC)
      注意属于特殊的补

可以发现,并交补运算与与或非运算有着极其类似的运算性质,可以联想记忆.

有限集合的计数
  1. 包含排斥原理
    (1) ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A\cup B|=|A|+|B|-|A\cap B| AB=A+BAB
    (2) ∣ A ∪ B ∪ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ∩ B ∣ − ∣ B ∩ C ∣ − ∣ A ∩ C ∣ + ∣ A ∩ B ∩ C ∣ |A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|B\cap C|-|A\cap C|+|A\cap B\cap C| ABC=A+B+CABBCAC+ABC
    总述:n个集合并集的元素基数 等于 n个集合的基数相加-从n中任选2个集合的形成的交集的基数相加+从n个这中任选3个集合形成的交集的基数相加-…+…
    一直到从n个集合中选n个为止
    期间加减交替
  2. 任给n个集合,求其交集的基数使用德摩根定律转化为求n个集合的并集的基数
    ∣ A ‾ ∩ B ‾ ∣ = ∣ A ∪ B ‾ ∣ = ∣ E ∣ − ∣ A ∪ B ∣ |\overline{A}\cap \overline{B}| =|\overline{A\cup B}|= |E|-|A\cup B| AB=AB=EAB
集合的笛卡尔乘积
  • 序偶:<a,b>就称为一个序偶,a为序偶的第一个分量,b为第二个分量.
  • 序偶相等当且仅当两个分量分别相等
  • 序偶分量交换后一般不相等(除非a=b)
  • 三元组:<<a,b>, c>称为三元组可以记作<a,b,c>并且满足约定
    . <<a,b>, c> = <a, b, c> ≠ \not= =<a, <b, c>>
  • 可以推广到多元组
    . < a 1 , a 2 , , . . . a n > = < < . . < a 1 , a 2 > , a 3 , . . . > a n > <a_1, a_2,, ...a_n> = <<..<a_1, a_2>, a_3,...>a_n> <a1,a2,,...an>=<<..<a1,a2>,a3,...>an>
  • 笛卡尔乘积:
    A x B = { < a , b > ∣ a ∈ A , b ∈ B } AxB = \{<a,b>|a\in A,b\in B\} AxB={<a,b>aA,bB}
    说明,AxB的基数等于两个集合基数的乘积,那么,AxB的子集就有 2 ∣ A ∣ ∣ B ∣ 2^{|A||B|} 2AB
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值